1 Computer Design (SWM)

Consider the following SystemVerilog code containing the module `element`.

typedef struct packed {
 logic v; // valid bit (1=valid, 0=invalid)
 logic [7:0] d; // data
} itemT;

typedef enum {opNone, opRead, opWrite} opT;

function automatic logic swapToggle(itemT a, itemT b);
 return (a.v && !b.v) || (a.d < b.d);
endfunction

module element(
 input clk,
 input rst,
 input opT op,
 input itemT dInTop,
 output itemT dOutTop,
 input itemT dInBot,
 output itemT dOutBot);

 itemT d[1:0];
 logic swap;

 always_comb
 begin
 dOutTop = d[swap];
 dOutBot = d[!swap];
 end

 always_ff @(posedge clk)
 if (rst)
 begin
 d[0] <= itemT'{d:0, v:0};
 d[1] <= itemT'{d:0, v:0};
 swap <= 0;
 end
 else
 case (op)
 opRead:
 begin
 d[swap] <= dInBot;
 swap <= swap ^ swapToggle(d[!swap], dInBot);
 // Note: ^ is SystemVerilog for XOR
 end
 opWrite:
 begin
 d[!swap] <= dInTop;
 swap <= swap ^ swapToggle(dInTop, d[swap]);
 end
 endcase
 endmodule
The figure below shows that the element module can be instantiated many times over to form a linear structure (technically called a systolic array). Valid data (i.e. data with the v bit set) is input on the top left of element 0 during a write operation (op=opWrite). Data is read out from element 0 top right during a read operation (op=opRead). Clock (clk) and reset (rst) signals have been omitted for clarity.

(a) If there are N elements, how many data items (of type itemT) can be stored by this structure? [4 marks]

(b) Four valid data items are written in the sequence: 4, 2, 3, 1. What will be the state of the outputs of element 0 (left[0], right[0]) and element 1 (left[1], right[1]) after each write clock cycle? Clearly enumerate the state changes, including changes to the swap bits. (e.g. via a state transition table) [6 marks]

(c) If there are then four read operations, in what sequence will data be read out? [6 marks]

(d) What function does this systolic array perform and what is its space and time complexity for processing N items by first writing all N items and then reading N items? [4 marks]