COMPUTER SCIENCE TRIPOS Part II – 2014 – Paper 8

6 Digital Signal Processing (MGK)

- (a) Consider a causal, order-2 digital filter with real-valued infinite impulse response sequence h_0, h_1, h_2, \ldots
 - (i) What is the z-transform H(z) of this filter's impulse response? [2 marks]
 - (*ii*) Express H(z) in terms of the locations c_1, c_2 of its two zeros and the locations d_1, d_2 of its two poles in \mathbb{C} . [4 marks]
 - (*iii*) Give a necessary condition for c_1, c_2, d_1, d_2 to ensure that $\{h_n\}$ has only real values. [4 marks]
 - (*iv*) If we operate that filter at sampling frequency f_s , what will its amplitude gain at frequency f be? [2 marks]
- (b) A notch filter aims to suppress a single frequency f_c . One way of designing an order-2 notch filter, as in part (a), involves placing the zeros directly onto the unit circle, and the poles right next to them inside the unit circle, at distance $0 < \alpha < 1$ from 0:

$$c_1 = e^{j\omega}, \quad d_1 = \alpha \cdot c_1, \quad c_2 = e^{-j\omega}, \quad d_2 = \alpha \cdot c_2, \quad \text{with} \quad \omega = 2\pi f_c/f_s$$

- (i) What is the z-transform of the impulse response of the resulting filter, written as a fraction of two polynomials of z^{-1} ? [4 marks]
- (*ii*) The OxyMax is a medical device designed in the United States. It processes a heart-beat signal with a sampling rate of $f_s = 600$ Hz. It contains the following C function, which implements a notch filter, as in part (b)(i), to suppress in the input signal interference from the North American power grid at $f_c = 60$ Hz:

The U.S. version initializes the constants used with $b1 = -2\cos(\pi/5)$, $a1 = b1 \times 0.9$ and a2 = 0.81. What changed constant(s) will instead suppress the power-grid frequency at $f_c = 50$ Hz for the European version? [4 marks]