
5

COMPUTER SCIENCE TRIPOS Part IB – 2014 – Paper 3

Compiler Construction (TGG)

Functional programmers will often rewrite a recursive function such as

fun fact1 n =

if n <= 1

then 1

else n * (fact1 (n -1))

to one such as

fun fact2 n =

let fun aux (m, a) =

if m <= 1

then a

else aux(m-1, m * a)

in aux (n, 1) end

using an accumulator (the parameter a of aux) and tail recursion.

(a) Clearly explain the optimisation such programmers are expecting from the
compiler and how that optimisation might improve performance. [4 marks]

(b) The desired optimisation can be performed by a compiler either directly on
the source program or on lower-level intermediate representations. Treating
it as a source-to-source transformation, rewrite fact2 to ML code that has
been transformed by this optimisation. You will probably use references and
assignments as well as the construct while EXP do EXP. [8 marks]

(c) Suppose that the programmer used instead a function as an accumulator.

fun fact3 n =

let fun aux (m, h) =

if m <= 1

then h(1)

else aux(m-1, fn r => m * (h r))

in aux (n, fn x => x) end

Will your optimisation still work in this case? Explain your answer in detail.
[8 marks]

1


