9 Algorithms (TMS)

(a) Explain the terms *amortized analysis, aggregate analysis* and *potential method.*

(b) Consider an arbitrary sequence of n stack operations \texttt{PUSH()}, \texttt{POP()} and \texttt{MULTIPOP(x)} in which \texttt{POP()} or \texttt{MULTIPOP(x)} never attempt to remove more elements than there are on the stack. Assuming that the stack begins with s_0 items and finishes with s_n items, determine the worst-case total cost for executing the n operations as a function of n, s_0 and s_n. You may assume \texttt{PUSH()} and \texttt{POP()} cost 1 each and \texttt{MULTIPOP(x)} costs x.

(c) Suppose we want to store a number of items in an array, but we do not know in advance how many items need to be stored. The \texttt{INSERT(x)} operation appends an item x to the array. More precisely, if the size of the array is large enough, x is inserted directly at the end of the array. Otherwise, a new array of larger size is created that contains all previous items with x being appended at the end. The total cost of \texttt{INSERT(x)} is 1 in the first case, and the size of the new array in the second case.

(i) Devise a strategy which, for any integer n, performs any sequence of n \texttt{INSERT(.)} operations at a total cost of $O(n)$.

(ii) For the strategy described in (c)(i), give a proof of the cost of the algorithm using the potential method.