
CST.2014.6.1

COMPUTER SCIENCE TRIPOS Part IB

Thursday 5 June 2014 1.30 to 4.30 pm

COMPUTER SCIENCE Paper 6

Answer five questions.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS
Script paper
Blue cover sheets
Tags
Rough work pad

SPECIAL REQUIREMENTS
Approved calculator permitted

CST.2014.6.2

1 Complexity Theory

(a) Give the two definitions of the complexity class NP, one using the term Turing
machine and one using the term verifier. [4 marks]

(b) For each of the following statements, state whether it is true, false or unknown.
In each case, give justification for your answer. In particular, if the truth
statement is unknown, state any implications that might follow from it being
true or false. [2 marks each]

(i) 3SAT ≤P CLIQUE

(ii) TSP ∈ P

(iii) NL ⊆ P

(iv) PSPACE 6= NPSPACE

(c) Let Σ = {0, 1}. Prove that ∅ and {0, 1}∗ are the only languages in P which are
not complete for P with respect to polynomial-time reductions. [8 marks]

2

CST.2014.6.3

2 Complexity Theory

(a) State precisely what it means for a language (i) to be co-NP-complete, (ii) to
be in NL and (iii) to be in PSPACE. [6 marks]

(b) Consider the following two decision problems.

Problem 1: Given an undirected graph G = (V,E) with |V | even,
does G contain a clique with at least |V |/2 vertices?

Problem 2: Given an undirected graph G = (V,E), does G contain
a clique with at least |V | − 3 vertices?

(i) Which of the two problems is in P and which one is NP−complete?
[2 marks]

(ii) For the problem in P, describe a polynomial-time algorithm. [4 marks]

(iii) For the other problem, prove that it is NP-complete. [8 marks]

3 (TURN OVER)

CST.2014.6.4

3 Computation Theory

(a) Explain how to code register machine programs P as numbers pPq ∈ N so that
each e ∈ N can be decoded to a unique register machine program prog(e).

[10 marks]

(b) Find a number e1 ∈ N for which prog(e1) is a register machine program for
computing the function one ∈ N→ N with one(x) = 1 for all x ∈ N. [2 marks]

(c) Why is it important for the theory of computation that the functions involved
in the coding and decoding given in part (a) are themselves register machine
computable? (You are not required to prove that they are computable.)

[2 marks]

(d) Define what it means for a set of numbers S ⊆ N to be register machine decidable.
[2 marks]

(e) Let ϕe ∈ N⇀N denote the partial function of one argument computed by the
register machine with program prog(e). Prove that {e ∈ N | ϕe = one} is
register machine undecidable (where one is the function mentioned in part (b)).
State carefully any standard results that you use in your proof. [4 marks]

4

CST.2014.6.5

4 Computation Theory

(a) Give the recursion equations for the function ρn(f, g) ∈ Nn+1 → N defined by
primitive recursion from functions f ∈ Nn → N and g ∈ Nn+2 → N. [2 marks]

(b) Define the class PRIM of primitive recursive functions, giving exact definitions
for all the functions and operations you use. [5 marks]

(c) Show that the addition function add(x, y) = x+ y is in PRIM. [2 marks]

(d) Give an example of a function N2 → N that is not in PRIM. [3 marks]

(e) The Fibonacci function fib ∈ N → N satisfies fib(0) = 0, fib(1) = 1 and
fib(x+ 2) = fib(x) + fib(x+ 1) for all x ∈ N.

(i) Assuming the existence of primitive recursive functions pair ∈ N2 → N,
fst ∈ N→ N and snd ∈ N→ N satisfying for all x, y ∈ N

fst(pair(x, y)) = x ∧ snd(pair(x, y)) = y

prove by mathematical induction that any function g ∈ N→ N satisfying

g(0) = pair(0, 1)

g(x+ 1) = pair(snd(g(x)), fst(g(x)) + snd(g(x)))

for all x ∈ N, also satisfies

∀x ∈ N(fst(g(x)) = fib(x) ∧ snd(g(x)) = fib(x+ 1)).

[4 marks]

(ii) Deduce that the Fibonacci function fib is in PRIM. [4 marks]

5 (TURN OVER)

CST.2014.6.6

5 Logic and Proof

(a) Proof methods for propositional logic include the sequent calculus, DPLL and
BDDs. Describe briefly each of these methods. State, with reasons, which
method is to be preferred for a problem that makes heavy use of the ↔ and ⊕
symbols. (Note that ⊕ denotes exclusive or.) [7 marks]

(b) Describe briefly the procedure for constructing a BDD, illustrating your answer
using the formula ((P ∨Q) ∧R) ∨ (P → (Q ∧R)).

[7 marks]

(c) Consider the following set of n+ 1 propositional formulas, where n ≥ 0:

Pi ↔ Pi+1 (for i = 1, . . . , n)

P1 ⊕ Pn+1

Describe a possible execution of the DPLL procedure to determine whether this
set is satisfiable or not. [6 marks]

6

CST.2014.6.7

6 Logic and Proof

(a) Describe briefly the concept of a decision procedure, listing at least three
separate examples of decidable theories. [4 marks]

(b) Outline the basic ideas behind Fourier-Motzkin variable elimination, demon-
strating them with reference to the following small set of constraints:

x+ 2y ≥ 10 x+ z ≤ 5 y ≤ 3 z − 2 ≥ 0

[6 marks]

(c) Call a clause positive if it consists of positive literals only. Negative selection
is a refinement of resolution where two clauses can be resolved only if one of
them is positive; if a clause contains any negative literals, then only one of those
may be resolved with a literal in another (necessarily positive) clause. Negative
selection reduces the number of combinations of literals to be compared, thereby
improving performance. Consider the following set of clauses:

{R(0), R(1)} {P (h(z)),¬R(z)} {¬P (x),¬R(y)}.

With negative selection, the first resolution step must involve {R(0), R(1)}, as
no other positive clauses are available at the start.

(i) If a set of clauses includes no positive clauses, can it be unsatisfiable?
Justify your answer. [3 marks]

(ii) Use resolution with negative selection to derive a contradiction from the
clauses above. [7 marks]

7 (TURN OVER)

CST.2014.6.8

7 Mathematical Methods for Computer Science

(a) Using complex exponentials, prove the following trigonometric identity, which
describes the multiplicative modulation of one cosine wave by another as being
simply the sum of a different pair of cosine waves:

cos(ax) cos(bx) =
1

2
cos((a+ b)x) +

1

2
cos((a− b)x)

[3 marks]

(b) The function sinc(x) =
sin(πx)

πx
for x 6= 0 as plotted here plays an important

role in the Sampling Theorem. By considering its Fourier transform, show that
this function is unchanged in form after convolution with itself, and show that
it even remains unchanged in form after convolution with any higher frequency
sinc function sinc(ax) for a > 1, but that if 0 < a < 1, then the result is instead
that lower frequency sinc function sinc(ax).

Figure �� The sinc function�
sin��x�

�x

0

0.2

0.4

0.6

0.8

1

1.2

0-W W

Figure �� Aliasing e�ect example

��

[5 marks]

(c) Let V be an inner product space spanned by an orthonormal system of vectors
{e1, e2, . . . , en} so that ∀i 6= j the inner product 〈ei, ej〉 = 0, but every ei is a unit
vector so that 〈ei, ei〉 = 1. We wish to represent a data set consisting of vectors
u ∈ span{e1, e2, . . . , en} in this space as a linear combination of the orthonormal

vectors: u =
n∑
i=1

aiei. Derive how the coefficients ai can be determined for any

vector u, and comment on the computational advantage of representing the data
in an orthonormal system. [7 marks]

(d) Show how a generating (or “mother”) wavelet Ψ(x) can spawn a family of
“daughter” wavelets Ψjk(x) by simple shifting and scaling operations, and
explain the advantages of representing continuous functions in terms of such
a family of self-similar dilates and translates of a mother wavelet. [5 marks]

8

CST.2014.6.9

8 Mathematical Methods for Computer Science

Suppose that X is a random variable with moment generating function MX(t) which
you may assume is well-defined and finite for all t.

(a) Show that for any constant a and for all t ≥ 0

P(X ≥ a) ≤ e−taMX(t) .

[5 marks]

(b) Show that for any constant a

P(X ≥ a) ≤ e−f(a)

where
f(a) = max

t≥0
(ta− lnMX(t)) .

[5 marks]

(c) Let X1, X2, . . . be a sequence of independent random variables each with the
same distribution as X. Show that for any a > E(X)

P

(
1

n

n∑
i=1

Xi ≥ a

)
≤ e−nf(a) .

[5 marks]

(d) Show that P(X ≥ a) ≤ e−a
2/2 when X ∼ N(0, 1) is a standard Normal random

variable and a > 0. You may use the result that in this case MX(t) = et
2/2.

[5 marks]

9 (TURN OVER)

CST.2014.6.10

9 Semantics of Programming Languages

Consider the concurrent imperative language L with syntax and conventional
operational semantics as below.

statement , s ::= skip | x := e; s | let r = x in s | let r = op(e1, ..., en) in s
| if (e1 = e2) s else s ′

expression, e ::= r | v

process , p ::= tid :s | p|p ′

label , l ::= Wx=v | Rx=v | τ | tid :l | Lx

Here x and r range over shared and thread-local variables, op over built-in operators,
v over values 0, 1, . . ., tid over thread ids a, b, Let m range over memory states,
functions from shared variables to values. In the lets, r binds in s .

s
l−→ s ′

x := v ; s
Wx=v−−−−→ s

wr
let r = x in s

Rx=v−−−→ {v/r}s
rd

if (v = v) s else s ′
τ−→ s

if1

v 6= v ′

if (v = v ′) s else s ′
τ−→ s ′

if2
v = [[op]](v1, . . . , vn)

let r = op(v1, ..., vn) in s
τ−→ {v/r}s

op

p
l−→ p ′

s
l−→ s ′

tid :s
tid :l−−→ tid :s ′

thread
p1

l−→ p ′1

p1|p2
l−→ p ′1|p2

par1
p2

l−→ p ′2

p1|p2
l−→ p1|p ′2

par2

p,m
l−→ p ′,m ′

p
tid :Wx=v−−−−−−→ p ′

p,m
tid :Wx=v−−−−−−→ p ′,m ⊕ {x 7→ v}

Swr

m(x) = v

p
tid :Rx=v−−−−−→ p ′

p,m
tid :Rx=v−−−−−→ p ′,m

Srd
p

tid :τ−−→ p ′

p,m
tid :τ−−→ p ′,m

Stau

Say p,m has a data race if there is a sequence of transitions p,m
l1−→ . . .

ln−→ l−→ l′−→ where
l and l′ conflict : they are reads or writes to the same location, at least one is a write,
and they are by different threads.

[continued . . .]

10

CST.2014.6.11

(a) Give a p for which p,m0 has a data race. [1 mark]

(b) A vector clock c is a function from thread ids to natural numbers, identifying
the c(tid)’th transition of each thread tid . Modify the semantics above to add
a vector clock c to each process thread (tid c:s), each process label (tid c:l), and
each memory location (with each m(x) now being a pair vc of a value and vector
clock). In your semantics each vector clock should be computed so as to record
the latest transition number of all threads that have causally affected that point.
Explain your semantics, perhaps with some simple examples. [11 marks]

(c) Suppose that p,m
l−→ l1−→ . . .

ln−→ l′−→ in your vector-clock semantics, where l and l′

conflict but are separated by l1, . . . , ln. To implement a dynamic race detector,
we would like to find conditions on l1, . . . , ln under which there is some other

execution with l and l′ adjacent: p,m
l̂1−→ . . .

l̂n̂−→ l̄−→ l̄′−→ (where l̄ and l̄′ are like l
and l′ but perhaps with different vector clocks). Give such a condition, as liberal
as you can, and explain why it has that property. [8 marks]

11 (TURN OVER)

CST.2014.6.12

10 Semantics of Programming Languages

Consider the language L below, with call-by-value functions, ML-style references, and
types nat+ and real+ of positive natural and positive real numbers. L includes a
primitive test for primality, prime (e), and a square-root function, sqrt (e); these
are defined only for positive-natural and positive-real values respectively.

T ::= bool | nat+ | real+ | T → T ′ | T ref

e ::= x | n | r | fn x : T ⇒ e | e e ′ | ref e | !e | e := e ′ | prime (e) | sqrt (e)

Here x ranges over a set X of variables and n and r range over N>0 and R>0

respectively. Let Γ range over finite partial functions from X to types T .

(a) Give typing rules defining Γ ` e : T for prime (e) and sqrt (e). [1 mark]

(b) There is an obvious runtime coercion from elements of nat+ to elements of
real+. To let programmers exploit that conveniently, we would like to define a
type system for L that includes a subtype relation T1 <: T2 with nat+ <: real+.
The type system should prevent all run-time errors.

(i) Give the other rules defining T1 <: T2 and the subsumption rule to use
that relation in Γ ` e : T . [4 marks]

(ii) Give the 6 (standard) typing rules defining Γ ` e : T for functions and
references. [3 marks]

(iii) With reference to your subtype rule for function types, explain covariance
and contravariance of subtyping. Give examples in L showing that your
rule is the only reasonable choice. [2 marks]

(iv) Similarly, justify your rule for reference types. [2 marks]

(c) To implement L, we want to translate it during typechecking to another typed
language L′ which makes that coercion explicit where required, as a new
expression form real of nat(e), and which does not have subtyping.

(i) Give the L′ typing rule for real of nat(e) and indicate any other changes
required to your type rules for L. [1 mark]

(ii) Define an inductive relation T <: T ′ ; e which for any T <: T ′ constructs
a coercion e : T → T ′. [4 marks]

(iii) Define an inductive relation Γ ` e ; e ′ : T where e is an L expression and
e ′ is an L′ expression which is like e but with coercions introduced where
needed, such that Γ ` e : T iff ∃e ′. Γ ` e ; e ′ : T . You should explain but
need not prove that, and you can omit the rules for references. [3 marks]

END OF PAPER

12

