2 Artificial Intelligence I (SBH)

We wish to solve a supervised learning problem using a perceptron computing the function

\[h(\mathbf{w}; \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) \]

where \(\mathbf{w} \) is a vector of weights, \(\mathbf{x} \) is a vector of features and \(\sigma(z) = 1/(1 + e^{-z}) \). We have a set of \(m \) labelled examples \(\mathbf{s} = (\langle \mathbf{x}_1, o_1 \rangle, \ldots, \langle \mathbf{x}_m, o_m \rangle) \) where \(o_i \in \{0, 1\} \).

(a) Derive the gradient descent training algorithm for training the perceptron by minimizing the error function

\[E(\mathbf{w}) = \sum_{i=1}^{m} (o_i - h(\mathbf{w}; \mathbf{x}_i))^2. \]

You may if you wish employ the result

\[\frac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z)). \]

[7 marks]

(b) We are now told that some training examples are more important than others, and it is thus more important that, after training, there is only a small difference between \(o_i \) and \(h(\mathbf{w}; \mathbf{x}_i) \) for these examples. Derive a new version of the training algorithm that takes this modification into account. [6 marks]

(c) Having trained a classifier \(h(\mathbf{w}_{\text{opt}}; \mathbf{x}) \) in part (a) using the training data available, a colleague presents you with a second classifier \(h'(\mathbf{w}_{\text{opt}}'; \mathbf{x}') \). Your colleague has trained this classifier using the same number of examples and the same labels, but a different collection of features, so for their classifier the training data was

\[\mathbf{s}' = (\langle \mathbf{x}'_1, o_1 \rangle, \ldots, \langle \mathbf{x}'_m, o_m \rangle). \]

Devise a way in which you might perform further training in order to combine the two classifiers \(h \) and \(h' \) into a single, possibly more powerful, classifier. [7 marks]