
9

COMPUTER SCIENCE TRIPOS Part II – 2012 – Paper 9

Optimising Compilers (AM)

(a) Explain the core ideas of strictness analysis, including the abstract val-
ues used for abstracting non-function values and what concrete values
they represent. Briefly explain how program functions f are abstracted
to strictness functions f ]. Give the abstractions of λ(x,y).x+y and
λ(x,y). if random() then x else y. [5 marks]

(b) Justify or correct the following statements: (i) “since abstract interpretation
replaces real-world computation with a directly corresponding abstract compu-
tation then strictness analysis fails to terminate on non-terminating programs”;
and (ii) “when a strict function is applied to an expression e then e is necessarily
evaluated during the call”. [4 marks]

(c) We now wish to extend strictness analysis from simple int expressions to allow
also (lazy) int list expressions. These represent lists whose head and tail
components are only evaluated when required. Wadler suggested capturing
strictness-like properties on lazy lists using an abstract interpretation with four
abstract values for int list concrete values:

0: non-termination

∞: a chain of cons cells, either infinite or having some tail component which
does not terminate

0∈: a chain of cons cells ending in nil but having at least one member which
does not terminate

1∈: a possibly empty chain of cons cells ending in nil every member of which
terminates

By analogy with ordinary strictness functions, give abstract interpretations in
truth-table form (noting that values of type int list have four values rather
than the standard two) for the following functions involving lazy list values:

(i) λ(x:int list). nil [1 mark]

(ii) λ(x:int list). cons(42,x) [1 mark]

(iii) λ(x,y:int list). if random() then x else y

Explain how you resolved any choice which arose. [3 marks]

(iv) hd [2 marks]

(v) tl [1 mark]

(vi) append [2 marks]

(vii) reverse [1 mark]

1


