9 Optimising Compilers (AM)

(a) Explain the core ideas of strictness analysis, including the abstract values used for abstracting non-function values and what concrete values they represent. Briefly explain how program functions f are abstracted to strictness functions f^\sharp. Give the abstractions of $\lambda(x,y). x + y$ and $\lambda(x,y). \text{if random()} \text{ then } x \text{ else } y$. [5 marks]

(b) Justify or correct the following statements: (i) “since abstract interpretation replaces real-world computation with a directly corresponding abstract computation then strictness analysis fails to terminate on non-terminating programs”; and (ii) “when a strict function is applied to an expression e then e is necessarily evaluated during the call”. [4 marks]

(c) We now wish to extend strictness analysis from simple int expressions to allow also (lazy) int list expressions. These represent lists whose head and tail components are only evaluated when required. Wadler suggested capturing strictness-like properties on lazy lists using an abstract interpretation with four abstract values for int list concrete values:

- 0: non-termination
- ∞: a chain of cons cells, either infinite or having some tail component which does not terminate
- $0\in$: a chain of cons cells ending in nil but having at least one member which does not terminate
- $1\in$: a possibly empty chain of cons cells ending in nil every member of which terminates

By analogy with ordinary strictness functions, give abstract interpretations in truth-table form (noting that values of type int list have four values rather than the standard two) for the following functions involving lazy list values:

(i) $\lambda(x:\text{int list}). \text{nil}$ [1 mark]

(ii) $\lambda(x:\text{int list}). \text{cons}(42,x)$ [1 mark]

(iii) $\lambda(x,y:\text{int list}). \text{if random()} \text{ then } x \text{ else } y$

Explain how you resolved any choice which arose. [3 marks]

(iv) hd [2 marks]

(v) tl [1 mark]

(vi) append [2 marks]

(vii) reverse [1 mark]