COMPUTER SCIENCE TRIPOS Part II – 2012 – Paper 9

6 Information Theory and Coding (JGD)

- (a) Prove that the information measure is additive: that the information gained from observing the combination of N independent events, whose probabilities are p_i for $i = 1 \dots N$, is the *sum* of the information gained from observing each one of these events separately and in any order. [3 marks]
- (b) What is the shortest possible decodable code length, in bits per average symbol, that could be achieved for a six-letter alphabet whose symbols have probabilities $(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{32})$? [3 marks]
- (c) Consider Shannon's third theorem, the Noisy Channel Coding Theorem, for a continuous communication channel having bandwidth W Hertz, perturbed by additive white Gaussian noise of power spectral density N_0 , and average transmitted power P.
 - (i) Is there any limit to the capacity of such a channel if you increase its signal-to-noise ratio $\frac{P}{N_0 W}$ without limit? If so, what is that limit?

[4 marks]

- (ii) Is there any limit to the capacity of such a channel if you can increase its bandwidth W in Hertz without limit, but while not changing N_0 or P? If so, what is that limit? [3 marks]
- (d) For each of the four classes of signals in the left table below, identify its characteristic spectrum from the right table. ("Continuous" here means supported on the reals, *i.e.* at least piecewise continuous but not necessarily everywhere differentiable. "Periodic" means that under multiples of some finite shift the function remains unchanged.) Give your answer just in the form 1-A, 2-B, etc. Note that you have 24 different possibilities. [4 marks]

Class	Signal Type	Class	Spectral Characteristic
1.	continuous, aperiodic	А.	continuous, aperiodic
2.	continuous, periodic	В.	continuous, periodic
3.	discrete, aperiodic	С.	discrete, aperiodic
4.	discrete, periodic	D.	discrete, periodic

(e) Define the Kolmogorov algorithmic complexity K of a string of data. What relationship is to be expected between the Kolmogorov complexity K and the Shannon entropy H for a given set of data? Give a reasonable estimate of the Kolmogorov complexity K of a fractal, and explain why it is reasonable. [3 marks]

1