7 Mathematical Methods for Computer Science (JGD)

(a) Define linear independence and linear dependence for the set of vectors \(\{v_1, v_2, \ldots, v_n\} \) of a vector space \(V \) over a field \(\mathbb{F} \) of scalars \(a_1, a_2, \ldots, a_n \in \mathbb{F} \).

(b) Using the Euclidean norm on an inner product space \(V = \mathbb{R}^3 \), for the following vectors \(u, v \in V \) whose span is a linear subspace of \(V \),

\[
\begin{align*}
 u &= \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \\
 v &= \left(\sqrt{3}, -\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2} \right)
\end{align*}
\]

demonstrate whether \(u, v \) form an orthogonal system, and also whether they form an orthonormal system.

(c) Using a diagram in the complex plane showing the \(N \)th roots of unity, explain why all the values of complex exponentials that are needed for computing the Discrete Fourier transform of \(N \) data points are powers of a primitive \(N \)th root of unity (circled here for \(N = 16 \)), and explain why such factorisation greatly reduces the number of multiplications required in a Fast Fourier transform.

(d) For the function \(f(x) = e^{-a|x|} \) with \(a > 0 \), derive its Fourier transform \(F(\omega) \).

(e) For a function \(f(x) \) whose Fourier transform is \(F(\omega) \), what is the Fourier transform of \(f^{(n)}(x) \), the \(n \)th derivative of \(f(x) \) with respect to \(x \)? Explain how Fourier methods make it possible to define non-integer orders of derivatives, and name one scientific field in which it is useful to take half-order derivatives.