Artificial Intelligence I

A perceptron takes inputs \(x^T = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n \) and computes its output

\[
h(x; w) = w_0 + \sum_{i=1}^{n} w_i x_i
\]

using weight vector \(w^T = (w_0, w_1, w_2, \cdots, w_n) \in \mathbb{R}^{n+1} \). We aim to use it to solve a regression problem using a training set \(s^T = ((x_1, y_1), (x_2, y_2), \cdots, (x_m, y_m)) \) with \(y_i \in \mathbb{R} \). The approach will be to minimise the error function

\[
E(w) = \sum_{i=1}^{m} (y_i - h(x_i, w))^2
\]

by gradient descent.

(a) Derive the gradient descent learning algorithm for this problem. [5 marks]

(b) The application dictates that the learning process sets as many weights as possible to zero, with the possible side effect that \(E \) is increased. It has been suggested that the error function used above might be modified by adding a further term

\[
\lambda \sum_{i=0}^{n} f(w_i, \theta)
\]

to \(E \) where

\[
f(w, \theta) = \begin{cases}
1 & \text{if } |w| > \theta \\
0 & \text{if } |w| \leq \theta
\end{cases}
\]

(i) Explain the purpose of the parameters \(\lambda \) and \(\theta \) in the extra term. [4 marks]

(ii) Assuming we continue to use a gradient descent approach, explain why this term might be inappropriate. [1 mark]

(c) Suggest a function that is appropriate for a gradient descent approach, having a shape similar to that of \(f \), and derive the associated gradient descent learning algorithm. [10 marks]