
CST.2011.6.1

COMPUTER SCIENCE TRIPOS Part IB

Thursday 9 June 2011 1.30 to 4.30

COMPUTER SCIENCE Paper 6

Answer five questions.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Script paper Approved calculator permitted
Blue cover sheets
Tags

CST.2011.6.2

1 Complexity Theory

The following is a quotation from an Internet forum on cryptography.

Cracking RSA is NP-complete so nothing better than brute force is
possible.

Your task is to evaluate to what extent (if any) this statement is true. For full
marks, you will consider the following questions.

• What would it mean, precisely, for “cracking RSA” to be NP-complete? In
particular, what is the decision problem involved and what is meant by saying
it is NP-complete?

• Is the problem, in fact, NP-complete? Why or why not?

• What is meant, precisely, by the conclusion, “nothing better than brute force
is possible”?

• Assuming the premise is correct, i.e. “cracking RSA is NP-complete”, does the
conclusion follow? Why or why not?

• What is the relationship, more generally, between encryption systems and
NP-completeness?

[20 marks]

2

CST.2011.6.3

2 Complexity Theory

(a) Recall that a Boolean formula is in 3-CNF if it is the conjunction of clauses,
each of which is the disjunction of at most three literals. A literal is either a
variable or a negated variable.

Consider the following two decision problems:

3-SAT: given a Boolean formula in 3-CNF, decide whether or not it is
satisfiable.

3-VAL: given a Boolean formula in 3-CNF, decide whether or not it is
valid.

(i) One of the two problems above is known to be in the complexity class P.
Which one, and why? [2 marks]

(ii) Describe a polynomial time algorithm for the problem you identified in
part (i). [6 marks]

(iii) What can you say about the complexity of the other problem? State
precisely any standard results you use in your answer. [4 marks]

(b) Say that a Boolean formula is in 3-DNF if it is the disjunction of terms, each
of which is the conjunction of at most three literals.

We now consider the following two decision problems:

3-DNF-SAT: given a Boolean formula in 3-DNF, decide whether or not it
is satisfiable.

3-DNF-VAL: given a Boolean formula in 3-DNF, decide whether or not
it is valid.

What can you conclude about the complexity of these two problems?
[8 marks]

3 (TURN OVER)

CST.2011.6.4

3 Computation Theory

(a) Explain how we can associate a unique number dP e to each register machine
program P . [5 marks]

(b) Consider the following two partial functions S : N⇀ N and T : N⇀ N on the
natural numbers.

S(dP e) =

{
n if the program P when started with 0 in all registers

halts after n steps;
0 otherwise.

T (dP e) =

{
n if the program P when started with 0

in all registers halts after n steps;
undefined otherwise.

(i) Which, if any, of S and T is computable and which is uncomputable?
[4 marks]

(ii) Give full justification for your answers above. State carefully any standard
results that you use. [11 marks]

4 Computation Theory

(a) State precisely what it means for a function f : Nk → N to be primitive
recursive, giving exact definitions for all operations you use. [5 marks]

(b) State precisely what it means for a function f : Nk → N to be λ-definable.
[5 marks]

(c) For each of the following functions, show (using the definitions you gave) that
it is primitive recursive and λ-definable.

(i) The function square : N→ N given by square(x) = x2. [4 marks]

(ii) The function fact : N→ N given by fact(x) = x!. [4 marks]

(d) Give a definition of a function that is λ-definable but not primitive recursive.
[2 marks]

4

CST.2011.6.5

5 Logic and Proof

(a) Recently, automated theorem provers based on the saturation algorithm have
become very powerful tools.

(i) Exhibit a proof by resolution of the following formula in first-order logic.
Include the conversion into a set of clauses and provide brief justification
for each step of the proof.

∀x(P (x)→ Q(x))→ (∃yP (y)→ ∃zQ(z))

[6 marks]

(ii) Prove P (s(s(s(0)))) by linear resolution from the following assumptions:

∀x((P (x) ∧Q(x))→ P (s(x)))

∀x(P (x)→ Q(x))

P (0)

[7 marks]

(b) Binary decision diagrams (BDDs) can be used to represent formulae in
propositional logic.

Show the steps in the recursive construction of a BDD, ordered alphabetically,
for the following formula:

((P ∧Q) ∨R)→ (Q ∨R)

[7 marks]

5 (TURN OVER)

CST.2011.6.6

6 Logic and Proof

(a) Unification is used to find a common instance of two terms.

(i) Briefly explain the unification algorithm, outlining non-trivial cases.
[4 marks]

(ii) What is the importance of the occurs check in the unification algorithm?
[2 marks]

(iii) Find a most general unifier for each of the following three pairs of terms
or explain why none exists. Do not rename variables prior to unification.

j(a, z, f(x)) j(y, f(y), z)

f(g(x, y), a, h(z)) f(z, x, y)

f(g(x), y, x) f(z, f(z), a)

[6 marks]

(b) Prove or disprove the following sequent of S4 modal logic:

�A,���B ⇒ ���(A ∧B)

[8 marks]

6

CST.2011.6.7

7 Mathematical Methods for Computer Science

(a) Let X be a random variable with finite mean, E(X), and variance, Var(X),
and let a > 0.

(i) Show Markov’s inequality that P (|X| ≥ a) ≤ E(|X|)
a . [5 marks]

(ii) Using Markov’s inequality show that P (|X| ≥ a) ≤ E(X2)
a2 . [5 marks]

(b) A study by a mobile phone operator shows that the expected number of
simultaneous calls at a base station is 100. The actual number of simultaneous
calls is a random variable, X, and so the base station is designed to handle a
higher number of simultaneous calls up to a maximum of M = 150.

(i) Use the Markov inequality to bound the probability that the station will
receive more than 150 calls. [5 marks]

(ii) Now suppose that we are given the additional information that the
variance of the number of simultaneous calls is 50. Use the inequality
from part (a)(ii) to give a second bound on the probability of exceeding
150 calls. [5 marks]

7 (TURN OVER)

CST.2011.6.8

8 Mathematical Methods for Computer Science

Let f [n] be a periodic sequence of period N with N -point Discrete Fourier
Transform (DFT) F [k] given by

F [k] =
N−1∑
n=0

f [n]e−2πink/N

and inverse transform given by

f [n] =
1

N

N−1∑
k=0

F [k]e2πink/N

Define the power, P , of a periodic sequence, f [n], of period N by

P =
1

N

N−1∑
n=0

|f [n]|2

(a) For each fixed k show that the periodic sequence 1
N F [k]e2πink/N has

power |F [k]|2/N2. [5 marks]

(b) If g[n] is a periodic sequence of period N with N -point DFT G[k] show that

N−1∑
n=0

f [n]g[n] =
1

N

N−1∑
k=0

F [k]G[k]

[5 marks]

(c) Show that the power of the periodic sequence f [n] is equal to 1
N2

∑N−1
k=0 |F [k]|2.

[5 marks]

(d) Suppose that f [n] is the periodic sequence given by f [n] = sin(2πn/N) of
period N . Recall that sin(θ) = (eiθ − e−iθ)/2i.

(i) Find F [k] the N -point DFT of f [n]. [3 marks]

(ii) Show that the power of f [n] is 1/2. [2 marks]

8

CST.2011.6.9

9 Semantics of Programming Languages

The following grammar specifies the syntax of a simple imperative programming
language. It is a fragment of L3.

Values: v ::= skip | n | x | `
(n ranges over integers, x over variables, and ` over locations)

Expressions: e ::= v | let x = e in e′ | v + v′ | v := v′ | !v | ref(v)
Types: T ::= unit | int | T ref
Stores: s finite partial functions from locations to values
Environments: Γ finite partial functions from locations and variables to types

Note that the grammar is very restrictive. For instance, the expression (3 + 4) + 7
is not allowed.

The language is typed according to the following standard rules.

Γ ` skip : unit Γ ` n : int
for n an integer

Γ ` x : T
if Γ(x) = T

Γ ` ` : T ref
if Γ(`) = T ref

Γ ` e : T Γ, x:T ` e′ : T ′

Γ ` let x = e in e′ : T ′
Γ ` v : int Γ ` v′ : int

Γ ` v + v′ : int

Γ ` v : T ref Γ ` v′ : T

Γ ` v := v′ : unit

Γ ` v : T ref

Γ ` !v : T

Γ ` v : T

Γ ` ref(v) : T ref

(a) Give a reasonable operational semantics for this language by defining a relation
over configurations. [7 marks]

(b) Write down all the reduction steps of the following expression. You do not
need to give their derivations.

let x = ref(0) in let y = !x in let z = y + 3 in x := z

[3 marks]

(c) State and prove a Type Preservation Theorem for this language.

You may assume the following definition:

a store s is well-typed for Γ, written Γ ` s,
if for all locations ` ∈ dom(s), there is a type T
such that Γ(`) = T ref and Γ ` s(`) : T

You may also assume the following substitution lemma:

If Γ ` v : T and Γ, x : T ` e : T ′ with x 6∈ dom(Γ) then Γ ` {v/x}e : T ′

[10 marks]

9 (TURN OVER)

CST.2011.6.10

10 Semantics of Programming Languages

The following grammar specifies the types and expressions of a simple functional
programming language.

Types: T ::= int | T → T ′

Expressions: e ::= n | x | e+ e′ | fn(x : T)⇒ e | e e′

where n ranges over all integers, and x ranges over variables.

(a) Give a reasonable semantics for this language, by specifying a type system and
a reduction relation. Use the call-by-name evaluation order. [9 marks]

(b) Write down all the reduction steps of the following expression. You do not
need to give their derivations.

(fn(x : int)⇒ (fn(x : int)⇒ x+ x)) (1 + 2) (3 + 4)

[3 marks]

(c) Prove the following property of substitution. [Hint: Use rule induction for
Γ, x : T ` e′ : T ′.]

if Γ ` e : T and Γ, x : T ` e′ : T ′ with x 6∈ dom(Γ) then Γ ` {e/x}e′ : T ′

[8 marks]

END OF PAPER

10

