
CST.2010.6.1

COMPUTER SCIENCE TRIPOS Part IB

Thursday 3 June 2010 1.30 to 4.30

COMPUTER SCIENCE Paper 6

Answer five questions.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Script paper Approved calculator permitted
Blue cover sheets
Tags

CST.2010.6.2

1 Complexity Theory

(a) Give precise definitions of polynomial-time reductions and NP-completeness.
[2 marks each]

(b) Prove that for any language L, L is polynomial-time reducible to some problem
in NP if, and only if, L is in NP. [6 marks]

(c) In a simple graph G = (V,E), a set of vertices X ⊆ V is said to be a vertex
cover of G if every edge e ∈ E has one endpoint in X. A set X ⊆ V is an
independent set of G if there is no edge between any two vertices in X.

VERTEX COVER is defined as the decision problem where, given a graph
G = (V,E) and a positive integer k, we are to determine whether G contains
a vertex cover with k or fewer vertices.

INDEPENDENT SET is defined as the decision problem where, given a graph
G = (V,E) and a positive integer k, we are to determine whether G contains
an independent set with k or more vertices.

(i) Show that a set X is a vertex cover of G if, and only if, its complement
V \X is an independent set of G. [2 marks]

(ii) Use this to show that VERTEX COVER is polynomial-time reducible to
INDEPENDENT SET and vice versa. [6 marks]

(iii) What can you conclude about the complexity of VERTEX COVER?
[2 marks]

2

CST.2010.6.3

2 Complexity Theory

(a) Give precise definitions of the complexity classes L and NL. [3 marks each]

(b) Explain why NL ⊆ P. [6 marks]

(c) The problem DIRECTED REACHABILITY is known to be NL-complete under
logarithmic space reductions and the problem CVP is known to be P-complete
under logarithmic space reductions.

Given just this information what can you conclude about the truth of the
following statements?

(i) DIRECTED REACHABILITY is logarithmic-space reducible to CVP.

(ii) CVP is logarithmic-space reducible to DIRECTED REACHABILITY.

(iii) DIRECTED REACHABILITY is polynomial-time reducible to CVP.

(iv) CVP is polynomial-time reducible to DIRECTED REACHABILITY.

[2 marks each]

3 (TURN OVER)

CST.2010.6.4

3 Computation Theory

(a) Define the notion of a register machine and the computation it carries out.
[5 marks]

(b) What does it mean for a partial function f(x1, . . . , xn) of n arguments to be
register machine computable? [3 marks]

(c) Why do there exist partial functions that are not register machine computable?
(Any standard results you use in your answer should be carefully stated.)

[3 marks]

(d) Consider the following register machine program.

L0 :R−1 → L1, L6

L1 :R−2 → L2, L4

L2 :R+
0 → L3

L3 :R+
3 → L1

L4 :R−3 → L5, L0

L5 :R+
2 → L4

L6 : HALT

Assuming the contents of registers R0 and R3 are initially zero, what function
of the initial contents of registers R1 and R2 does this program compute in
register R0 upon halting? (You may find it helpful to consider the graphical
representation of the program.) [4 marks]

(e) Let f(x1, x2) be the partial function that is equal to x1 − x2 if x1 ≥ x2 and is
undefined otherwise. Give a register machine program that computes f .

[5 marks]

4

CST.2010.6.5

4 Computation Theory

(a) Define Church’s representation of numbers n as λ-terms n. [3 marks]

(b) What does it mean for a partial function f ∈ Nn⇀N to be λ-definable? What
is the relationship between λ-definability and computability? [3 marks]

(c) Show that succ(x1) = x1 + 1 is λ-definable. [4 marks]

(d) Ackermann’s function ack ∈ N2→N is a total function of two arguments
satisfying

ack(0, x2) = x2 + 1

ack(x1 + 1, 0) = ack(x1, 1)

ack(x1 + 1, x2 + 1) = ack(x1, ack(x1 + 1, x2)).

By considering λx. x T S where T = λf y. y f (f 1) and S is chosen suitably,
prove that Ackermann’s function is λ-definable. [10 marks]

5 Logic and Proof

(a) Write brief notes on the use of binary decision diagrams (BDD) to represent
propositional formulae. Illustrate your answer by constructing the BDD
corresponding to the formula [p→ (q∧s)]∧ [s∨(r → s)], ordering the variables
alphabetically. [8 marks]

(b) Exhibit a model for the following set of clauses, or prove that they are
inconsistent:

{¬p(x, y), r(x, y), q(x),¬p(y, x)}

{¬r(x, y),¬q(y), r(y, x)}

{r(x, y),¬q(x),¬q(y)}

{p(a, b)} {p(b, a)} {¬r(a, b)}

Here a and b are constants, while x and y are variables. [12 marks]

5 (TURN OVER)

CST.2010.6.6

6 Logic and Proof

(a) Use the sequent or tableau calculus to prove the formula

∃x (P (x)→ Q)→ ∀x (P (x)→ Q)

[6 marks]

(b) A mysterious propositional connective, �, has the following sequent calculus
rule, (�r):

Γ⇒∆, A,B Γ, A,B⇒∆

Γ⇒∆, A�B

What is the corresponding left-side sequent calculus rule, (�l)? Justify your
answer, for example by giving the truth table for �. [6 marks]

(c) Use the DPLL method to find a model of the following set of clauses, or
alternatively to prove that they are inconsistent.

{P,R,¬S} {¬Q,R} {¬P,¬S,¬R} {¬P, S,Q} {S,Q, P} {¬Q,¬R} {¬S,¬R,P}

[8 marks]

6

CST.2010.6.7

7 Mathematical Methods for Computer Science

(a) What is an orthonormal basis? Why is it important that a basis be
orthonormal? [4 marks]

(b) A real, periodic function, f(x), can be expressed as a Fourier series. This can
be shown in several ways. One is as a sum of weighted, offset, cosine functions:

f(x) =

∞∑
k=0

Ak cos

(
xk

2π

T
− θk

)
A second way is as a sum of complex exponentials with complex coefficients:

f(x) =
∞∑

k=−∞

ck exp

(
ixk

2π

T

)
where the complex coefficients, ck, have the constraint ck = c∗−k for f(x) real.

(i) Prove that these two alternative expressions of the Fourier series are
equivalent. [8 marks]

(ii) Express the complex coefficient ck in terms of the real parameters Ak
and θk. [2 marks]

(c) Consider the box function:

b(x) =

{
1, |x| ≤ 1

2
0, otherwise

and the tent function:

t(x) = b(x) ∗ b(x) =

{x+ 1, −1 ≤ x < 0
1− x, 0 ≤ x ≤ 1
0, otherwise

(i) Find the Fourier transform of b(x). [4 marks]

(ii) Find the Fourier transform of t(x). [2 marks]

The following formulæ may be useful.

eiφ = cosφ+ i sinφ

sin(a+ b) = sin a cos b+ cos a sin b

sin(a− b) = sin a cos b− cos a sin b

cos(a+ b) = cos a cos b− sin a sin b

cos(a− b) = cos a cos b+ sin a sin b

cos2 φ+ sin2 φ = 1

7 (TURN OVER)

CST.2010.6.8

8 Mathematical Methods for Computer Science

(a) Let {Xn : n = 0, 1, · · ·} be a two-state Markov chain with transition
probabilities given by the matrix

P =

(
p 1− p

1− q q

)
Let Ni,j = E (number of visits to state j before first return to state i|X0 = i)
for i 6= j. Prove that

N2,1 =
1− q
1− p

giving careful attention to any special cases.

[Hint: Consider φ
(n)
i,j = P(X1 = j,X2 = j, . . . , Xn = j,Xn+1 = i|X0 = i).]

[8 marks]

(b) Two marksmen, Alice and Bob, take turns shooting at a target. They agree
that Alice will shoot after each hit, while Bob will shoot after each miss.
Suppose Alice hits the target with probability α, while Bob hits the target
with probability β. Over a long period of time, what proportion of shots hit
the target? State carefully any theorems that you use in arriving at your
answer. Again, check any special cases. [12 marks]

8

CST.2010.6.9

9 Semantics of Programming Languages

A very simple imperative language, L0, has the following syntax and semantics.

Locations: l, l1, l2, . . . (infinite)
Syntax: e ::= true | false | if e then e1 else e2 | l := e | !l
Store: finite partial functions s from locations to {true, false}
Configuration: pairs 〈e, s〉 of an expression e and a store s
Type: bool (this is the only type)
Environment: a finite set Γ of locations

(r-if1) 〈if true then e1 else e2, s〉 −→ 〈e1, s〉
(r-if2) 〈if false then e1 else e2, s〉 −→ 〈e2, s〉

(r-if3)
〈e, s〉 −→ 〈e′, s′〉

〈if e then e1 else e2, s〉 −→ 〈if e′ then e1 else e2, s′〉
(r-deref) 〈!l, s〉 −→ 〈b, s〉 if l ∈ dom(s) and s(l) = b

(r-assign1) 〈l := b, s〉 −→ 〈b, s{l 7→ b}〉 if l ∈ dom(s) and b = true or b = false

(r-assign2)
〈e, s〉 −→ 〈e′, s′〉

〈l := e, s〉 −→ 〈l := e′, s′〉

(t-bool1) Γ ` true : bool (t-bool2) Γ ` false : bool

(t-deref) Γ `!l : bool if l ∈ Γ (t-assign)
Γ ` e : bool

Γ ` l := e : bool
if l ∈ Γ

(t-if)
Γ ` e : bool Γ ` e1 : bool Γ ` e2 : bool

Γ ` if e then e1 else e2 : bool

(a) State the Progress theorem for well-typed L0. [2 marks]

(b) Prove the Progress theorem, by rule induction on the structure of type
derivations. [9 marks]

(c) Define a notion of semantic equivalence for L0. Give a constraint on the syntax
of e under which (if e then e1 else e1) is semantically equivalent to (e1).

[4 marks]

(d) We now write (e; e′) as a shorthand for (if e then e′ else e′). We say that two
L0 expressions, e1 and e2, form a “snap-back pair” if for every L0 expression e,
the expression ((e1; e); e2) is semantically equivalent to (true). Either exhibit
a snap-back pair, or argue informally why there are no snap-back pairs in L0.

[5 marks]

9 (TURN OVER)

CST.2010.6.10

10 Semantics of Programming Languages

Below is the syntax and operational semantics for a pure functional language.

Types: T ::= bool | T → T
Variables: {x, y, z, . . .}
Expressions: e ::= true | false | if e then e1 else e2 | fn(x : T)⇒ e | e e′.

In the expression fn(x : T)⇒ e, the variable x is binding in e.

(if1) (if true then e1 else e2) −→ e1

(if2) (if false then e1 else e2) −→ e2

(if3)
e −→ e′

(if e then e1 else e2) −→ (if e′ then e1 else e2)

(app)
e1 −→ e′1

e1 e2 −→ e′1 e2

(fn) (fn(x : T)⇒ e) e′ −→ {e′/x}e

(There is no need for a store because there are no store access operations.)

(a) Is this a call-by-value or a call-by-name language? Revise the operational
semantics to demonstrate the other calling convention. [4 marks]

(b) A type environment is a finite partial function Γ from variables to types. Define
a typing relation Γ ` e : T by giving a set of rules. [6 marks]

(c) Are the following expressions typable?

e1 = fn(f : (bool→ bool)→ bool)⇒
(
fn(f : bool→ bool)⇒ f f

)
e2 = fn(f : bool→ (bool→ bool))⇒

(
fn(x : bool)⇒ (f x)x

)
[2 marks]

(d) State formally the following two theorems of the one-step reduction semantics
at the top of the page and the type system that you defined in part (b):
Progress and Type Preservation. Take care to explain what a value is. (No
proofs are required for this part.) [3 marks]

(e) State and prove the Type Safety theorem. You may use the results stated in
part (d). [5 marks]

END OF PAPER

10

