
CST.2010.3.1

COMPUTER SCIENCE TRIPOS Part IB

Monday 31 May 2010 1.30 to 4.30

COMPUTER SCIENCE Paper 3

Answer five questions.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Script paper Approved calculator permitted
Blue cover sheets
Tags

CST.2010.3.2

1 Algorithms II

(a) Describe Dijkstra’s shortest-path algorithm, making the priority queue
operations explicit. [4 marks]

(b) Provide a small example demonstrating that Dijkstra’s shortest-path algorithm
will not work correctly when negative weights are used on some arcs.

[3 marks]

(c) Suppose some arcs in a directed graph have negative weights, and that −W is
the least negative weight among all arcs. Suppose that we add W to all arcs
in the graph to obtain a new graph with non-negative arc weights. Will the
resulting graph have the same shortest paths as the original graph? Explain
your answer. [3 marks]

(d) For each of the data structures listed below, describe the computational
complexity of Dijkstra’s shortest-path algorithm when this data structure is
used to implement the algorithm’s priority queue. Justify your answers.

(i) An unsorted array, indexed by node number. [2 marks]

(ii) A linked list, sorted by key (in this case a distance estimate). [2 marks]

(iii) A binary heap. [2 marks]

(iv) A binomial heap. [2 marks]

(v) A Fibonacci heap. [2 marks]

2 Algorithms II

(a) Describe the basic operations on the disjoint-set data structure. [3 marks]

(b) Describe the simple linked-list implementation of the disjoint-set data
structure, without the weighted-union or path compression optimisations.
Explain the complexity of each operation. [6 marks]

(c) Describe Kruskal’s algorithm for finding a minimum spanning tree. [6 marks]

(d) If the simple linked-list implementation (part (b)) is used to implement
the disjoint-set data structure in Kruskal’s algorithm, what is the resulting
complexity? [5 marks]

2

CST.2010.3.3

3 Compiler Construction

(a) What are the principal features of a regular language and of a context-free
language and their respective parsers? [4 marks]

(b) When implementing a compiler, why is a regular language commonly used for
lexical analysis and why are context-free grammars commonly used for the
main syntax analysis phase? [3 marks]

(c) Give two main features that distinguish a recursive-descent parser from an
SLR(k) parser (or similar). [2 marks]

(d) The C++ language uses the “>>” character sequence to denote the right-shift
operator. This character sequence can also appear when a template (generic)
type takes another template as its argument, as in “stack<list<int>>” that
is supposed to denote a stack of integer lists. What problem can this cause?

[1 mark]

Comment on how you might solve this problem

(i) in the syntax analyser; and [2 marks]

(ii) in the lexical analyser. [2 marks]

Comment on the relative elegance of the two solutions. [1 mark]

(e) A common language construct is “T v;” to declare a variable called “v” or type
“T”. What parsing problem can arise if “T” is a user-defined type? Explain
how the lexical analyser could benefit from feedback from the syntax analyser
in this situation. [5 marks]

3 (TURN OVER)

CST.2010.3.4

4 Compiler Construction

(a) How is inheritance of class variables typically implemented by a compiler for
an object-oriented language in which each class has exactly one parent?

[3 marks]

(b) When supporting multiple inheritance, what extra run-time complexity arises
when casting or coercing an object handle up or down and why is this avoided
using the Java concept of an interface? [3 marks]

(c) When supporting multiple inheritance, what identifier clash problem can arise
and what are the possible solutions? [4 marks]

(d) Explain, using an example, the potential for an erroneous downcast in an
object-oriented language such as Java, C++ or C#. [4 marks]

(e) Sketch assembly-level code that

(i) detects an erroneous downcast;

(ii) finds an exception handler for it; and

(iii) correctly jumps to the handler.

Assume that the handler is already registered with the run-time system
and that there are no arguments to the exception. Use any well-known
implementation techniques, such as keeping an object’s identity in its virtual
method table and stacking exception handlers on an extra run-time stack.

[6 marks]

4

CST.2010.3.5

5 Concepts in Programming Languages

(a) List two differences between the programming languages FORTRAN and
Pascal. [4 marks]

(b) List two differences between the programming languages SIMULA and
Smalltalk. [4 marks]

(c) Explain what is understood by type checking and by type inference in the
context of programming languages. Compare the two approaches, presenting
their advantages and disadvantages. [4 marks]

(d) Give an example in the SML Modules language of a signature and of a
structure. State whether or not the structure matches the signature, explaining
your answer. [4 marks]

(e) The programming language Scala introduced case classes. Explain why they
are useful in programming, giving code samples. [4 marks]

5 (TURN OVER)

CST.2010.3.6

6 Programming in C and C++

(a) Popular programming journal Obscure C Techniques for Experts has published
a novel way to save space for a doubly-linked list program. Instead of storing
two pointers (one next and one previous), this new technique stores a single
value: the XOR of previous and next pointers.

A traditional two-pointer linked list might be illustrated as:

· · · A B C D E · · ·
→ next → next → next →
← prev ← prev ← prev →

In contrast, the proposed new technique stores a bit-wise XOR of the previous
and next pointers within a single field.

· · · A B C D E · · ·
↔ ⊕ ↔ ⊕ ↔ ⊕ ↔

You have been engaged to provide code examples of this approach for
publication.

Ensure your code illustrates the creation and initialization of such a list as well
as the insertion, and deletion, of elements from such a list. Additionally, you
must provide examples of a forward or backward traversal of the list permitting
examination of each element in turn. [15 marks]

(b) Comment on this form of linked list. Consider the comparative speed, memory
overheads, maintenance and other advantages or disadvantages of the XOR

doubly-linked list approach when compared with an approach that stores both
previous and next pointers. [5 marks]

6

CST.2010.3.7

7 Prolog

(a) Consider the following clauses:

a(1).

a(a).

b(2).

b(3).

c(X,X) :- a(X).

c(X,Y) :- a(X),!,b(Y).

c(X,X) :- b(X).

List all of the possible solutions to the query c(A,B) in order. [2 marks]

(b) Consider the predicate p/4 defined as:

p(_,[],[],[]).

p(P,[X|Xs],[X|L1],L2) :- X < P, p(P,Xs,L1,L2).

p(P,[X|Xs],L1,[X|L2]) :- X >= P, p(P,Xs,L1,L2).

(i) What does p/4 do? Show an example query and response. [2 marks]

(ii) What types of terms cannot be used as the first p/4 argument? [2 marks]

(iii) Describe where and why red and green cuts can be usefully employed
within the p/4 predicate, modifying the predicate if necessary. [3 marks]

(iv) The quicksort algorithm requires selection of a pivot value, forming two
sublists, and then building the sorted list from the results of recursively
quicksorting the sublists. The first sublist contains all elements that are
less than the pivot value. The second contains the remaining elements.

Implement quicksort in a predicate qs(+In,-Out) that binds Out to a
sorted version of the list In, and uses the p/4 predicate above. Assume
that In only contains numbers. Do not optimise your choice of pivot
value: just use the head of the input list. [5 marks]

(c) The predicate flatten(+In,-Out) is defined to expect that In be unified
with a list that may contain elements that are themselves lists (and likewise
for those lists, up to any depth). In such cases, Out is unified with a list that
never has elements that are lists—all lists are expanded in place. For example,
flatten([1,2,[3,4],[[5],6]],[1,2,3,4,5,6]) would be true.

Implement the flatten/2 predicate. When given a valid query, your solution
should not provide any spurious results. [6 marks]

7 (TURN OVER)

CST.2010.3.8

8 Software Engineering

(a) Discuss the lessons learned from the London Ambulance Service disaster from
the following viewpoints.

(i) Requirements engineering.

(ii) Human factors.

(iii) Testing.

(iv) Project management. [12 marks]

(b) You have been hired by the Department of Energy and Climate Change
(DECC) to manage a project to replace Britain’s 47 million gas and electricity
meters with “smart” meters that report energy use every 30 minutes. These
reports go to a central service, and energy companies have access to their
customers’ readings. The goals of the system are to facilitate more flexible
pricing, so customer demand can be brought more into line with supply; to
make it simpler for customers to switch energy companies; and to help DECC
predict and manage energy demand.

Describe what measures you would take to reduce the likelihood of a project
disaster. [8 marks]

8

CST.2010.3.9

9 Further Java

Fellows at Norisbon College dine at a circular table on which there is a single fork
between each Fellow. Fellows either eat or think, and always start dinner thinking.
To eat, a Fellow first picks up the fork immediately to his left and, once successful,
picks up the fork immediately to his right. When a required fork is not on the
table, the Fellow waits, neither eating nor thinking, until the fork is returned to the
table. After eating, a Fellow returns both forks to the table. No cutlery is required
to think.

Your task is to model the above scenario in Java.

(a) Write a class called Fork with two public methods, pickUp and putDown. The
methods should take no arguments and return no result. An instance of Fork
should act as a lock to prevent concurrent access. In other words, once pickUp
has been called, all further calls to pickUp should block until putDown is called;
when putDown is called, one caller (if any) who is blocked should proceed.

[7 marks]

(b) Write a class called Fellow which inherits from the Thread class and
implements the abstract method run. The Fellow class should have a single
constructor which takes two Fork objects, one representing the fork to the
Fellow’s left, and one to the right. When run, an instance of Fellow should
think for ten seconds, eat for ten seconds and think for ten seconds before
terminating. [7 marks]

(c) Describe when and why your implementation may suffer deadlock. [2 marks]

(d) By altering the order in which the forks are picked up, describe how you would
modify your implementation so that it does not suffer deadlock. [4 marks]

END OF PAPER

9

