Types

(a) What is meant by beta-reduction, beta-conversion and beta-normal forms for the polymorphic lambda calculus (PLC)? Explain why typeable PLC expressions are beta-convertible to beta-normal forms that are unique up to alpha-conversion. Is the same true for untypeable PLC expressions? (Any general properties of PLC you use should be clearly stated, but need not be proved.) [10 marks]

(b) Let \(\tau \) be the PLC type \(\forall \beta((\alpha \rightarrow \beta) \rightarrow \beta) \), where \(\alpha \) and \(\beta \) are distinct type variables. Give closed PLC beta-normal forms \(I \) and \(J \) with the following properties:

(i) \(I \) has type \(\forall \alpha(\alpha \rightarrow \tau) \)

(ii) \(J \) has type \(\forall \alpha(\tau \rightarrow \alpha) \)

(iii) \(\Lambda \alpha(\lambda x : \alpha(J \alpha(I \alpha x))) \) has beta-normal form \(\Lambda \alpha(\lambda x : \alpha(x)) \)

Justify your answers by giving proofs of typing and beta-conversion. [8 marks]

What is the beta-normal form of \(\Lambda \alpha(\lambda y : \tau(I \alpha (J \alpha y))) \)? [2 marks]