
CST.2009.6.1

COMPUTER SCIENCE TRIPOS Part IB

Thursday 4 June 2009 1.30 to 4.30

COMPUTER SCIENCE Paper 6

Answer five questions.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Script paper Approved calculator permitted
Blue cover sheets
Tags

CST.2009.6.2

1 Complexity Theory

Consider the following decision problems.

1. (PROB1) Given a graph G = (V,E), does it contain a path that visits
every edge exactly once?

2. (PROB2) Given a graph G = (V,E), does it contain a path that visits
every node exactly once?

(a) Which of the two problems is in P and which is NP-complete? [2 marks]

(b) Describe a polynomial time algorithm for the problem in P. [6 marks]

(c) Prove that the other problem is in fact NP-complete. [12 marks]

2 Complexity Theory

(a) Define precisely what we mean when we write L1 ≤P L2. [4 marks]

(b) What is the difference between NP-completeness and NP-hardness? [2 marks]

(c) Let 3COL denote the following decision problem.

Given a graph G = (V,E), is it 3-colourable?

(i) Is 3COL in NP? Why? [2 marks]

(ii) Show that 3SAT ≤P 3COL. [10 marks]

(iii) Argue that 3COL is NP-complete. [2 marks]

2

CST.2009.6.3

3 Computation Theory

(a) What is meant by a state (or configuration) of a register machine? [2 marks]

(b) A register machine program Prog is said to loop at x ∈ N if, when started
with register R1 containing x and all other registers set to zero, the sequence
of states Prog computes contains the same non-halted state at two different
times.

(i) At which x does the following program loop?

R HALT
_

0

[2 marks]

(ii) Show that if Prog loops at x, then the computation of Prog does not halt
when started with register R1 containing x and all other registers set to
zero. Is the converse true? [4 marks]

(iii) Consider the set S = {〈e, x〉 | Proge loops at x} of codes of pairs of
numbers (e, x) such that the register machine program Proge with index
e loops at x. By adapting the usual proof of undecidability of the halting
problem, or otherwise, show that S is an undecidable set of numbers.
[Hint: if M were a register machine that decided membership of S, first
consider replacing each HALT instruction (and each jump to a label with
no instruction) with the program in part (i).] [12 marks]

3 (TURN OVER)

CST.2009.6.4

4 Computation Theory

(a) Define what it means for a subset S ⊆ N to be a recursively enumerable set of
numbers. [2 marks]

(b) Show that if S and S′ are recursively enumerable sets of numbers, then so are
the following sets (where 〈x, y〉 = 2x(2y + 1)− 1).

(i) S1 = {x | x ∈ S or x ∈ S′}

(ii) S2 = {〈x, x′〉 | x ∈ S and x′ ∈ S′}

(iii) S3 = {x | 〈x, x′〉 ∈ S for some x′ ∈ N}

(iv) S4 = {x | x ∈ S and x ∈ S′}

Any standard results about partial recursive functions you use should be clearly
stated, but need not be proved. [16 marks]

(c) Give an example of a subset S ⊆ N that is not recursively enumerable.
[2 marks]

4

CST.2009.6.5

5 Foundations of Functional Programming

(a) Define the Church numerals giving the encodings of zero 0, one 1 and an
arbitrary number n. [3 marks]

(b) Define λ-terms to perform the following operations on Church numerals. You
may assume standard definitions for Booleans (true, false, if, and, and or) and
pairs (pair, fst, and snd). For each part, you may assume solutions to the
previous parts of the question. You may not use a fixed-point combinator.

(i) Test for zero. [2 marks]

(ii) Successor. [2 marks]

(iii) Predecessor (where predecessor of zero is zero). [4 marks]

(iv) Less than or equal. [3 marks]

(v) Equality. [2 marks]

(vi) Successor modulus n (where succnnm = 0 if n = m+ 1, and
succnnm = m+ 1 otherwise). [2 marks]

(vii) Modulus (e.g modnm = m mod n). [2 marks]

5 (TURN OVER)

CST.2009.6.6

6 Foundations of Functional Programming

(a) Define what it means for a λ-calculus term to be in normal form. Is it possible
for a λ-term to have two normal forms that are not α-equivalent? Provide
justification for your answer. [3 marks]

(b) For each of the following, give an example of a λ-term that

(i) is in normal form;

(ii) is not in normal form but has a normal form; and

(iii) does not have a normal form.

For (ii), you should also present the term’s normal form, and for (iii) you
should show that the term does not have a normal form. [4 marks]

We define a λ-term N to be non-trivial iff there exist A and B such that
N A→∗ true and N B →∗ false, where true and false encode the Booleans.

(c) Give an example of a λ-term that is non-trivial, and show that it is non-trivial.
[2 marks]

We define a λ-term N as total iff for each λ-term M , either N M →∗ true or
N M →∗ false

(d) Give an example of a λ-term that is total, and show that it is total. [2 marks]

(e) Prove that there is no non-trivial and total λ-term.

[Hint: Suppose N is non-trivial and total where N A →∗ true and
N B →∗ false, and consider the term N(Y L) where L ≡ (λx. if (N x)BA)
and where Y is the fixed-point operator.]

[7 marks]

(f) What consequences does this have for defining a general equality λ-term such
that

equalAB →∗ true ifA = B

equalAB →∗ false otherwise

[2 marks]

6

CST.2009.6.7

7 Logic and Proof

(a) What is an S4 modal frame? [2 marks]

(b) For each of the following formulae of S4 modal logic, present either a sequent
calculus proof or a falsifying interpretation.

(i) (�(P → Q) ∧�P)→ �Q [6 marks]

(ii) �(P ∨Q)→ (�P ∨ �Q) [6 marks]

(iii) (��P ∧ ��Q) → �(P ∧Q) [6 marks]

8 Logic and Proof

(a) Briefly indicate the differences between the tableau calculus and the sequent
calculus. [2 marks]

(b) Prove the formula [∀x (P (x)→ R(x, x))]→ [∀x∃y (R(x, y)∨¬P (y))] using the
tableau calculus, or exhibit a falsifying interpretation. [8 marks]

(c) Give a model for the following set of clauses, or prove that none exists. Here
a is a constant, while x and y are variables. Explain your reasoning clearly.

{¬R(x, a), R(x, x)} {¬R(x, x), R(x, a)}

{¬R(y, f(x)),¬R(y, x)} {R(y, x), R(y, f(x))}

[10 marks]

7 (TURN OVER)

CST.2009.6.8

9 Semantics of Programming Languages

Consider the following syntax for a pure untyped functional language.

Booleans b ∈ B = {truetruetrue, falsefalsefalse}
Integers n ∈ Z = {...,−1, 0, 1, ...}
Variables x ∈ X for a set X = {x, y, z, ...}
Operations op ::= + | ≥
Expressions

e ::= skipskipskip | n | b | e1 op e2 | ififif e1 thenthenthen e2 elseelseelse e3 | fnfnfn x ⇒ e | e1 e2 | x | fixfixfix e

The language supports recursion with a fixed-point operator fixfixfix e, which has
semantics defined by the rule below.

fixfixfix e −→ e(fixfixfix e)

(a) Give the semantic rules for function application for call-by-value, call-by-
name, and full-beta reduction for this language (do not give the rules for
binary operators, conditional, or fix). You should define a small-step reduction
relation e −→ e ′, stating precisely what notion of values v you are using.

[10 marks]

(b) For the call-by-value semantics, characterise the expressions e from the
grammar above that have an immediate runtime error in their outermost (top-
level) construct. [3 marks]

(c) For each pair of semantics (call-by-value and call-by-name, call-by-name and
full-beta, and full-beta and call-by-value), give an expression with different
possible termination behaviours in each element of the pair. [4 marks]

(d) For each of your three semantics, explain a disadvantage in using that
semantics for a programming language. [3 marks]

8

CST.2009.6.9

10 Semantics of Programming Languages

Consider the variant of untyped L1 with syntax as below and a standard small-step
semantics 〈e, s〉 −→ 〈e ′, s ′〉 (this is identical to L1 except that it has equality testing
e1 = e2 on integers instead of ≥ and that here stores are total functions).

Booleans b ∈ B = {truetruetrue, falsefalsefalse}
Integers n ∈ Z = {...,−1, 0, 1, ...}
Locations ` ∈ L = {l , l0, l1, l2, ...}
Stores s, total functions from L to Z
Values v ::= skipskipskip | n | b
Operations op ::= = | +
Expressions

e ::= skipskipskip | n | b | e1 op e2 | ififif e1 thenthenthen e2 elseelseelse e3 | ` := e | !` | e1; e2 |
whilewhilewhile e1 dododo e2

Define [[e]] to be the function that takes any store s and either is ⊥ (undefined), if
〈e, s〉 −→ω, or is 〈v , s ′〉, if 〈e, s〉 −→∗ 〈v , s ′〉.

Define (untyped) semantic equivalence e1 ' e2 iff [[e1]] = [[e2]].

(a) State what it means for ' to be a congruence. [2 marks]

(b) For each of the constructs of the expression grammar, define an explicit
characterisation of [[e]] in terms only of the semantics [[e ′]] of its subexpressions
e ′, without using the reduction relation. (For example, for n (which has no
subexpressions) [[n]] = λs.〈n, s〉.) [12 marks]

(c) Consider (ififif !l = 1 thenthenthen e elseelseelse e) ' e. Either prove it, using your answer
to part (b), or exhibit a counterexample. [3 marks]

(d) Consider (whilewhilewhile e1 dododo e2) ' (whilewhilewhile e1 dododo (e2; e2)) where e1 does not
read any store locations. State whether this is true or false, with an informal
explanation of the possible cases. [3 marks]

END OF PAPER

9

