Consider the language

\[e ::= x \mid \lambda x.e \mid e_1; e_2 \mid \xi?x.e \mid \xi!e_1.e_2 \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3. \]

in which \(\xi \) represents a communication channel (from a fixed set), and the forms \(e_1; e_2, \xi?x.e \) and \(\xi!e_1.e_2 \) respectively represent sequencing, reading from a channel (binding \(x \)) and writing to a channel.

(a) Construct an effect system for the above language where effects, \(F \), are represented as sets of actions of the form \(\xi? \) or \(\xi! \) representing side-effects of input from or output to \(\xi \). Explain the two principal occurrences of effects in the judgement form of your system. [8 marks]

(b) Assess the safety of your analysis making clear any respects in which execution behaviour may fail to match your analysis. [2 marks]

(c) Let us say a general program analysis framework is any-path-like (as opposed to all-path-like) if the analyses of \(\text{if } e_1 \text{ then } e_2 \text{ else } e_3 \) and \(e_1; e_2; e_3 \) coincide. Is your effect system any-path-like? Justify your answer. [2 marks]

(d) Augment the above language with constructs

\[e ::= \text{letchan } \xi \text{ in } e \mid \text{parsum}(e_1, e_2) \]

which allow a local channel to be created, and also inter-thread communication (\(e_1 \) and \(e_2 \) are evaluated in parallel and their sum returned when both have completed). Extend your effect system to the augmented language, noting that reads and writes to local channels are not to be reflected in the overall effect of a \text{letchan}. [6 marks]

(e) Suggest an alternative data structure for \(F \) that might enable effects of the form “after getting two inputs from channel \(\xi_1 \) or getting one input from channel \(\xi_2 \) then an output is written to channel \(\zeta \)” to be represented. [A modified effect system is not required.] [2 marks]