Mathematics for Computation Theory

(a) Let $f : A \rightarrow B$ be a function with domain A and range B. Show that the relation R on A defined by

$$(x, y) \in R \iff f(x) = f(y)$$

is an equivalence relation. [4 marks]

(b) A partition of a set A is a set A of disjoint subsets of A such that $A = \bigcup A$, and

$$B, C \in A \Rightarrow (B = C) \lor (B \cap C) = \emptyset$$

Let $g(n, r)$ be the number of partitions of a set A having n elements into r subsets, where $1 \leq r \leq n$. If $1 < r < n$, show that

$$g(n, r) = r g(n-1, r) + g(n-1, r-1).$$

[7 marks]

(c) Using the above formula, or otherwise, evaluate $g(n, r)$ in the cases:

(i) $r = 2$ [4 marks]

(ii) $r = (n - 1)$ [5 marks]