(a) Explain the use of the following when representing circuits in logic:

(i) higher-order variables; [2 marks]

(ii) conjunction (\land); [2 marks]

(iii) existential quantification (\exists). [2 marks]

(b) Describe a representation of binary words in logic and define a function that maps a word to the natural number it encodes in binary. [2 marks]

(c) Describe how the following components are modelled in higher-order logic:

(i) unit-delay; [2 marks]

(ii) clocked, edge-triggered D-type register. [2 marks]

(d) Let $[t, t']$ denote the closed interval starting at t and ending at t' ($t \leq t'$ and both t and t' are included in the interval). Give definitions in higher-order logic of the predicates

(i) Stable

(ii) Odd

where: $\text{Stable } f (t, t')$ is true if and only if the value of f is constant on the interval $[t, t']$ and $\text{Odd } f (t, t')$ is true if and only if f is true an odd number of times in the interval $[t, t']$. [2 + 4 marks]

(e) Contrast the simple switch model of transistors with the difference switching model. [2 marks]