Databases

(a) The Entity/Relationship model is based around the concepts of *entity*, *attribute*, and *relationship*. Describe how these can be represented in the relational model. [6 marks]

(b) Data normalisation is often an important component in database design. Discuss why this is so, and give examples of situations where normalisation is *not* important. [6 marks]

(c) Let \(A \) and \(B \) be disjoint non-empty sets of attributes. Let \(R \) be a relation over attributes \(A \cup B \) and let \(S \) be a relation over attributes \(B \).

Suppose that we want to introduce a new relational operation called *division*, denoted \(R \div S \), that will return a relation over attributes \(A \). The relation \(R \div S \) is made up of all tuples \(t \) such that for all \(s \in S \) we have \(ts \in R \) (\(ts \) is the concatenation of \(t \) and \(s \)).

Note that in the special case that \(R = T \times S \) for some relation \(T \), then \((R \div S) = T \) and \((R \div T) = S \).

In other words, \(\div \) can be treated as an inverse to the Cartesian product.

Can we define \(R \div S \) in the relational algebra? Prove that your answer is correct. [8 marks]