
2006 Paper 9 Question 9

Artificial Intelligence II

In this question we deal with a general two-class supervised learning problem.
Instances are denoted by x ∈ X, the two classes by c1 and c2, and h : X →
{c1, c2} denotes a hypothesis. Labelled examples appear independently at random
according to the distribution P on X ×{c1, c2}. The loss function L(ci, cj) denotes
the loss incurred by a classifier predicting ci when the correct prediction is cj .

(a) Show that if our choice of hypothesis h is completely unrestricted and L is the
0–1 loss function then the Bayes optimal classifier minimising

E [L(h(x), c)]

where the expected value is taken according to the distribution P is given by

h(x) =

{
c1 if Pr(c1|x) > 1

2
c2 otherwise.

[10 marks]

(b) We now define a procedure for the generation of training sequences, denoted
by s. LetH be a set of possible hypotheses, let p(h) be a prior onH, let p(x) be
a distribution on X and let Pr(c|x, h) be a likelihood, denoting the probability
of obtaining classification c given instance x and hypothesis h ∈ H. A training
set s is generated as follows. We obtain a single h ∈ H randomly according
to p(h). We then obtain m instances (x1, . . . , xm) independently at random
according to p(x). Finally, these are labelled according to the likelihood such
that

p(s|h) =
m∏
i=1

Pr(ci|xi, h)p(xi).

We now wish to construct a hypothesis h′, not necessarily inH, for the purposes
of classifying future examples. The usual approach in a Bayesian context would
be to construct the hypothesis

h′(x) =

{
c1 if Pr(c1|x, s) > 1

2
c2 otherwise.

By modifying your answer to part (a) or otherwise, show that this remains an
optimal procedure in the case of 0–1 loss.

[10 marks]
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