Artificial Intelligence II

In this question we deal with a general two-class supervised learning problem. Instances are denoted by \(x \in X \), the two classes by \(c_1 \) and \(c_2 \), and \(h : X \to \{c_1, c_2\} \) denotes a hypothesis. Labelled examples appear independently at random according to the distribution \(P \) on \(X \times \{c_1, c_2\} \). The loss function \(L(c_i, c_j) \) denotes the loss incurred by a classifier predicting \(c_i \) when the correct prediction is \(c_j \).

(a) Show that if our choice of hypothesis \(h \) is completely unrestricted and \(L \) is the 0–1 loss function then the Bayes optimal classifier minimising

\[
E[L(h(x), c)]
\]

where the expected value is taken according to the distribution \(P \) is given by

\[
h(x) = \begin{cases} c_1 & \text{if } Pr(c_1|x) > \frac{1}{2} \\ c_2 & \text{otherwise}. \end{cases}
\]

[10 marks]

(b) We now define a procedure for the generation of training sequences, denoted by \(s \). Let \(\mathcal{H} \) be a set of possible hypotheses, let \(p(h) \) be a prior on \(\mathcal{H} \), let \(p(x) \) be a distribution on \(X \) and let \(Pr(c|x, h) \) be a likelihood, denoting the probability of obtaining classification \(c \) given instance \(x \) and hypothesis \(h \in \mathcal{H} \). A training set \(s \) is generated as follows. We obtain a single \(h \in \mathcal{H} \) randomly according to \(p(h) \). We then obtain \(m \) instances \((x_1, \ldots, x_m)\) independently at random according to \(p(x) \). Finally, these are labelled according to the likelihood such that

\[
p(s|h) = \prod_{i=1}^{m} Pr(c_i|x_i, h)p(x_i).
\]

We now wish to construct a hypothesis \(h' \), not necessarily in \(\mathcal{H} \), for the purposes of classifying future examples. The usual approach in a Bayesian context would be to construct the hypothesis

\[
h'(x) = \begin{cases} c_1 & \text{if } Pr(c_1|x, s) > \frac{1}{2} \\ c_2 & \text{otherwise}. \end{cases}
\]

By modifying your answer to part (a) or otherwise, show that this remains an optimal procedure in the case of 0–1 loss.

[10 marks]