Foundations of Functional Programming

(a) What does the combinator expression \(S \ S \ S \ S \ S \ S \) reduce to? Explain your working carefully. [4 marks]

(b) What would you get if you had a sequence of \(n \) \(S \) combinators (part (a) is the case \(n = 6 \))? [5 marks]

(c) If you start with a sequence of \(K \) combinators of general length \(n \), as in the expression \((K \ K \ K \ K \ K \ K)\) that arises when \(n = 6 \), what will the expression reduce to? [3 marks]

(d) Now what about sequences that start \(S \ K \ S \ K \ S \ K \) in cases where \(n \) instances of \(S \) alternate as shown with \(n \) of \(K \)? You should certainly include in your answer a tabulation of results for some small values of \(n \). [8 marks]