Dijkstra developed an efficient algorithm to find shortest paths on a directed graph from a designated source vertex to all other vertices, but only on graphs with non-negative edge weights.

(a) Give a clear and complete explanation of the algorithm. Be sure to cover its use of relaxation and to explain what happens if some vertices are not reachable from the source. [5 marks]

(b) Give a correctness proof for the algorithm. You may use the convergence lemma without having to prove it. [5 marks]

[Hint: here is the convergence lemma. If \(s \leadsto u \rightarrow v \) is a shortest path from \(s \) to \(v \), and at some time \(d[u] = \delta(s, u) \), and at some time after that the edge \((u, v) \) is relaxed, then, from then on, \(d[v] = \delta(s, v) \).]

Additional hint on notation: \(s \leadsto u = \) path from \(s \) to \(u \) consisting of 0 or more edges (0 when \(s \equiv u \)); \(u \rightarrow v = \) path from \(u \) to \(v \) consisting of precisely one edge; \(d[u] = \) weight of the shortest path found so far from source \(s \) to vertex \(u \); \(\delta(s, v) = \) weight of shortest existing path from \(s \) to \(v \).]

(c) Why does the algorithm require non-negative edge weights? [2 marks]

(d) Would the algorithm work if the only negative weights were on edges leaving the source? Justify your answer with a proof or counterexample. [5 marks]

(e) Consider the following approach for finding shortest paths in the presence of negative edges. “Make all the edge weights positive by adding a sufficiently large biasing constant to each; then find the shortest paths using Dijkstra’s algorithm and recompute their weights on the original graph.” Will this work? Justify your answer with a proof or counterexample. [3 marks]