Computation Theory

(a) (i) Give a graphical representation of the following register machine program.

\[\begin{align*}
L0 & : \ Z^+ \rightarrow L1 \\
L1 & : \ L^- \rightarrow L2, L3 \\
L2 & : \ Z^+ \rightarrow L0 \\
L3 & : \ Z^- \rightarrow L4, L5 \\
L4 & : \ L^+ \rightarrow L3 \\
L5 & : \ X^- \rightarrow L1, L6 \\
L6 & : \ \text{HALT}
\end{align*} \]

[3 marks]

(ii) Assuming the contents of register \(Z \) is initially 0, when the program is run starting at instruction \(L0 \) what functions of the initial contents of registers \(X \) and \(L \) are computed in \(X \) and \(L \) when the machine halts? [5 marks]

(b) (i) What is meant by a Turing machine, its configurations, transition relation and the computations it carries out? What does it mean to say that a computation halts? [6 marks]

(ii) Given a Turing machine, is it decidable whether or not for all possible initial configurations the machine will not halt after 100 steps of transition? Justify your answer. [6 marks]