Numerical Analysis II

(a) Explain the term positive semi-definite. If A is a real square matrix show that $A^T A$ is symmetric and positive semi-definite. [3 marks]

(b) How is the l_2 norm of A defined? State Schwarz’s inequality for the product Ax. [2 marks]

(c) Describe briefly the properties of the matrices U, W, V in the singular value decomposition $A = UWV^T$. [3 marks]

(d) Let \hat{x} be an approximate solution of $Ax = b$, and write $r = b - A\hat{x}$, $e = x - \hat{x}$. Derive a computable estimate of the relative error $\|e\|/\|x\|$ in the approximate solution, and show how this may be used with the l_2 norm. [8 marks]

(e) Suppose A is a 7×7 matrix whose singular values are 10^2, 10^{-4}, 10^{-10}, 10^{-16}, 10^{-22}, 10^{-29}, 10^{-56}. Construct the matrix W^+ that you would use (i) if machine epsilon $\approx 10^{-15}$, and (ii) if machine epsilon $\approx 10^{-30}$. [4 marks]