2005 Paper 7 Question 8

Information Theory and Coding

(a) For a binary symmetric communication channel whose input source is the alphabet $X = \{0, 1\}$ with probabilities $\{0.5, 0.5\}$ and whose output alphabet is $Y = \{0, 1\}$, having the following channel matrix where ϵ is the probability of transmission error:

$$\begin{pmatrix}
1-\epsilon & \epsilon \\
\epsilon & 1-\epsilon
\end{pmatrix}$$

- (i) How much uncertainty is there about the input symbol once an output symbol has been received? [5 marks]
- (*ii*) What is the mutual information I(X; Y) of this channel? [2 marks]
- (*iii*) What value of ϵ maximises the uncertainty H(X|Y) about the input symbol given an output symbol? [1 mark]
- (b) For a continuous (i.e. non-discrete) function g(x), define:
 - (i) its continuous Fourier transform G(k); [2 marks]
 - (*ii*) the inverse Fourier transform that recovers g(x) from G(k). [2 marks]
- (c) What simplifications occur in the Fourier representation of a function if:
 - (i) the function is real-valued rather than complex-valued? [1 mark]
 - (ii) the function has even symmetry? [1 mark]
 - (*iii*) the function has odd symmetry? [1 mark]
- (d) Give a bit-string representation of the number 13 in

(*iii*) Elias gamma code for positive integers.

(i) unary code for non-negative integers;[1 mark](ii) Golomb code for non-negative integers with parameter b = 3;[2 marks]

[2 marks]