Computation Theory

(a) What does it mean for a subset \(S \) of the set \(\mathbb{N} \) of natural numbers to be register machine \textit{decidable}? [3 marks]

(b) For each \(e \in \mathbb{N} \), let \(\varphi_e \in Pfn(\mathbb{N}, \mathbb{N}) \) denote the partial function computed by the register machine program with index \(e \). Let \(e_0 \in \mathbb{N} \) be an index for the totally undefined partial function (so that \(\varphi_{e_0}(x) \uparrow \), for all \(x \in \mathbb{N} \)).

Suppose that a total function \(f \in Fun(\mathbb{N}, \mathbb{N}) \) is \textit{extensional}, in the sense that for all \(e, e' \in \mathbb{N} \), \(f(e) = f(e') \) if \(\varphi_e \) and \(\varphi_{e'} \) are equal partial functions. Suppose also that the set \(S_f = \{ x \in \mathbb{N} \mid f(x) = f(e_0) \} \) is not the whole of \(\mathbb{N} \), so that for some \(e_1 \in \mathbb{N} \), \(f(e_1) \neq f(e_0) \).

(i) If membership of \(S_f \) were decided by a register machine \(M \), show informally how to construct from \(M \) a register machine \(M' \) that, started with \(R_1 = e \) and \(R_2 = n \) (any \(e, n \in \mathbb{N} \)) always halts, with \(R_0 = 0 \) if \(\varphi_e(n) \downarrow \) and with \(R_0 = 1 \) if \(\varphi_e(n) \uparrow \). Make clear in your argument where you use the fact that \(f \) is extensional.

[Hint: For each \(e, n \in \mathbb{N} \) consider the index \(i(e, n) \in \mathbb{N} \) of the register machine that inputs \(x \), computes \(\varphi_e(n) \) and if that computation halts, then computes \(\varphi_{e_1}(x) \).] [14 marks]

(ii) Deduce that if \(f \) is extensional, then \(S_f \) is either the whole of \(\mathbb{N} \), or not decidable. [3 marks]