Numerical Analysis II

(a) Explain the term *positive semi-definite*. If A is a real square matrix show that $A^T A$ is symmetric and positive semi-definite. [3 marks]

(b) How is the l_2 norm of A defined? State Schwarz’s inequality for the product $A x$. [2 marks]

(c) Describe briefly the properties of the matrices U, W, V in the *singular value decomposition* $A = U W V^T$. [3 marks]

(d) Let \hat{x} be an approximate solution of $A x = b$, and write $r = b - A \hat{x}$, $e = x - \hat{x}$. Derive a computable estimate of the relative error $\|e\|/\|x\|$ in the approximate solution, and show how this may be used with the l_2 norm. [8 marks]

(e) Suppose A is a 7×7 matrix whose singular values are 10^2, 10^{-4}, 10^{-10}, 10^{-16}, 10^{-22}, 10^{-29}, 10^{-56}. Construct the matrix W^+ that you would use

(i) if *machine epsilon* $\simeq 10^{-15}$, and

(ii) if *machine epsilon* $\simeq 10^{-30}$. [4 marks]