
2004 Paper 9 Question 3

Optimising Compilers

Assume that a program consists of a sequence of declarations Object o; where o
is an object name, followed by a sequence of function definitions f(x1, . . . , xk) = e
where expressions, e, have syntax

e ::= n | o | x | f(e1, . . . , ek) | let x = e1 in e2 | if e1 then e2 else e3.

where n ranges over integer constants and x over variables (which may contain
integers or object references). Variables may not contain function values.

Alias Analysis is a technique which will determine that, during evaluation of e
within

let x = o in let y = o in e

x and y alias because they are both references to the same object o.

(a) Show how to associate a flow variable with each variable and
(sub-)expression of the program. State the values which flow variables might
reasonably take in such an analysis. [4 marks]

(b) Show how, given a program, we can generate a set of constraint-style equations
(analogously to control-flow analysis for λ-expressions) whose solution gives a
superset of the values which might be returned from each (sub-)expression of
the program. [Hint: suppose that each function definition has flow variables
representing the value ranges of each of its arguments and of its result.]

[8 marks]

(c) Explain what happens in, and give modifications to part (b) for, the
generalisation whereby variables can also reference functions and be called
by the syntax

e ::= e0(e1, . . . , ek)

[4 marks]

(d) Explain how you would respond to the criticism that your analysis may fail to
terminate if your language is extended with arithmetic expressions because a
single expression may give rise to an infinite set of values. [2 marks]

(e) Briefly describe any optimisation whereby knowing that x and y cannot alias
is necessary for the optimisation to be safe. [2 marks]

1

