Denotational Semantics

(a) The function \(\text{fix} \) is the least fixed point operator from \((D \to D) \) to \(D \), for a domain \(D \).

(i) Show that \(\lambda f. f^n(\bot) \) is a continuous function from \((D \to D) \) to \(D \) for any natural number \(n \).

[Hint: Use induction on \(n \). You may assume the evaluation function \((f, d) \mapsto f(d) \) and the function \(f \mapsto (f, f) \), where \(f \in (D \to D) \) and \(d \in D \), are continuous.] [7 marks]

(ii) Now argue briefly why

\[
\text{fix} = \bigsqcup_{n \geq 0} \lambda f. f^n(\bot),
\]

to deduce that \(\text{fix} \) is itself a continuous function. [3 marks]

(b) In this part you are asked to consider a variant \(\text{PCF}_{\text{rec}} \) of the programming language \(\text{PCF} \) in which there are terms \(\text{rec} \, x : \tau. \, t \), recursively defining \(x \) to be \(t \), instead of terms \(\text{fix} \, \tau \).

(i) Write down a typing rule for \(\text{rec} \, x : \tau. \, t \). [2 marks]

(ii) Write down a rule for the evaluation of \(\text{rec} \, x : \tau. \, t \). [2 marks]

(iii) Write down the clause in the denotational semantics which describes the denotation of \(\text{rec} \, x : \tau. \, t \). (This will involve the denotation of \(t \) which you may assume.) [3 marks]

(iv) Write down a term in \(\text{PCF}_{\text{rec}} \) whose denotation is the least fixed point operator of type \((\tau \to \tau) \to \tau \). [3 marks]