2004 Paper 7 Question 8

Information Theory and Coding

(a) Consider an alphabet of 8 symbols whose probabilities are as follows:

A	B	C	D	E	F	G	H
$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{128}$	$\frac{1}{128}$

(i) If someone has selected one of these symbols and you need to discover which symbol it is by asking "yes/no" questions that will be truthfully answered, what would be the most efficient sequence of such questions that you could ask in order to discover the selected symbol? [2 marks]
(ii) By what principle can you claim that each of your proposed questions is maximally informative?
(iii) On average, how many such questions will need to be asked before the selected symbol is discovered?
(iv) What is the entropy of the above symbol set?
(v) Construct a uniquely decodable prefix code for the symbol set, and explain why it is uniquely decodable and why it has the prefix property.
[2 marks]
(vi) Relate the bits in your prefix code to the "yes/no" questions that you proposed in (i).
(b) Explain the meaning of "self-Fourier", and cite at least two examples of mathematical objects having this property.
[3 marks]
(c) Explain briefly:
(i) sensation limit; [1 mark]
(ii) critical band;
[1 mark]
(iii) Bark scale.
(d) Which different aspects of perception do Weber's law and Steven's law model?
[2 marks]

