Numerical Analysis I

(a) The mid-point rule can be expressed in the form

\[I_n = \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} f(x)dx = f(n) + e_n \]

where

\[e_n = f''(\theta_n)/24 \]

for some \(\theta_n \) in the interval \((n-\frac{1}{2}, n+\frac{1}{2})\). Assuming that a formula for \(\int f(x)dx \) is known, and using the notation

\[S_{p,q} = \sum_{n=p}^{q} f(n), \]

describe a method for estimating the sum of a slowly convergent series \(S_{1,\infty} \), by summing only the first \(N \) terms and estimating the remainder by integration. [5 marks]

(b) Assuming that \(f''(x) \) is a positive decreasing function, derive an estimate of the error \(|E_N| \) in the method. [5 marks]

(c) Given

\[\int \frac{dx}{(1 + x)\sqrt{x}} = 2\tan^{-1}\sqrt{x} \]

illustrate the method by applying it to

\[\sum_{n=1}^{\infty} \frac{1}{(1 + n)\sqrt{n}}. \]

Verify that \(f''(x) \) is positive decreasing for large \(x \), and estimate the integral remainder to be added to \(S_{1,N} \). [6 marks]

(d) How large should \(N \) be to achieve an absolute error of approximately \(2\times10^{-15} \)? [You may assume \(N + 1 \simeq N \) for this purpose.] [4 marks]