Numerical Analysis I

(a) For Single Precision in the IEEE binary floating-point standard (IEEE 754) the precision is defined as 24, and the exponent requires 8 bits of storage. With reference to IEEE Single Precision, explain the terms exponent, significand, precision, sign bit, normalised number, denormal number. [6 marks]

(b) Explain the term hidden bit. What are the values of the hidden bit for normalised and denormal numbers? How is the exponent stored and why? How are the exponent, significand and sign bit arranged in memory? [4 marks]

(c) Let \(x^* \) denote the floating-point representation of a number \(x \). Define the terms absolute error \((\varepsilon_x) \) and relative error \((\delta_x) \) in representing \(x \). How are \(\varepsilon_x \) and \(\delta_x \) related? Define machine epsilon \((\varepsilon_m) \). [3 marks]

(d) Assume \(\delta_x = \delta_y = \delta_z = \varepsilon_m \). Using worst-case analysis, estimate \(\delta_{xy}, \varepsilon_{xy} \). Find an expression for \(\delta_w \) where \(w = z - xy \). [4 marks]

(e) Working to 4 significant decimal digits only, compute \(w^* \) when \(x^* = 2.018, \ y^* = 2.008, \ z^* = 4.058 \). Given \(\varepsilon_m \simeq 0.5 \times 10^{-3} \), how many significant decimal digits of \(w^* \) can be relied on? [3 marks]