Numerical Analysis I

(a) For IEEE Double Precision $\beta = 2$, $p = 53$, $e_{\text{min}} = -1022$, $e_{\text{max}} = 1023$. Explain the meaning of these parameters and deduce the number of bits required to store the sign, exponent and significand. How many bytes are required in total? [5 marks]

(b) What is the hidden bit and what is its value for normalised numbers, and for denormal numbers? [2 marks]

(c) Define machine epsilon ϵ_m. What is its value for IEEE Double Precision? [3 marks]

(d) Suppose $f(x) = O(1)$, $f'(x) = O(1)$ and

$$\frac{f(x + h) - f(x)}{h}$$

is to be used with IEEE Double Precision to estimate $f'(x)$ and $f''(x)$. State what value of h you would use in each case, and what absolute accuracy (as a power of 2) you would expect to achieve. [4 marks]

(e) Special purpose floating-point hardware is to be designed with the following specification. Each number is to occupy 6 bytes but otherwise obey the principles of IEEE arithmetic as far as possible. The arithmetic must be sufficiently accurate that second derivatives can be computed to an absolute accuracy of 10^{-3} if $f(x) = O(1)$, $f'(x) = O(1)$. Deduce the parameters of this arithmetic. [Hint: $10^{-3} \approx 2^{-10}$ is sufficiently accurate.] [6 marks]