(a) Let L be the set of all strings over the alphabet $\{a, b\}$ that end in a and do not contain the substring bb. Describe a deterministic finite automaton whose language of accepted strings is L. Justify your answer. [5 marks]

(b) Explain what is meant by a regular expression r over an alphabet Σ and by the language $L(r)$ determined by r. [6 marks]

If a regular expression r does not contain any occurrence of the symbol \emptyset, is it possible for $L(r)$ to be empty? [2 marks]

Explain why it is always possible, given a regular expression r over Σ, to find a regular expression $\sim r$ with the property that $L(\sim r)$ is the set of all strings over Σ that are not in $L(r)$. Any standard results you use should be carefully stated, but need not be proved. [7 marks]