Complexity Theory

If \(A \subseteq \Sigma_1^* \) and \(B \subseteq \Sigma_2^* \) are two languages over the alphabets \(\Sigma_1 \) and \(\Sigma_2 \) respectively, we write \(A \leq_P B \) to denote that \(A \) is polynomial-time reducible to \(B \).

(a) Give a precise definition of \(\leq_P \) [2 marks]

(b) Is the relation \(\leq_P \) on languages:

 (i) reflexive?

 (ii) symmetric?

 (iii) transitive?

 Give a proof for your answer in each case. [9 marks]

(c) If \(\Sigma \) is an alphabet, show that if \(P = NP \) then every language \(L \subseteq \Sigma^* \) in \(NP \) is \(NP \)-complete except \(\emptyset \) and \(\Sigma^* \). Why are these two exceptions not \(NP \)-complete? [9 marks]