2002 Paper 9 Question 10

Information Theory and Coding

- (a) (i) A Hamming Code allows reliable transmission of data over a noisy channel with guaranteed error correction as long as no more than one bit in any block of 7 is corrupted. What is the maximum possible rate of information transmission, in units of (data bits reliably received) per (number of bits transmitted), when using such an error correcting code? [2 marks]
 - (ii) In such a code, what type of Boolean operator on the data bits is used to build the syndromes? Is this operator applied before transmission, or upon reception?
- (b) (i) For each of the four classes of signals in the following table,

Class	Signal Type
1.	continuous, aperiodic
2.	continuous, periodic
3.	discrete, aperiodic
4.	discrete, periodic

identify its characteristic spectrum from the following table:

Class	Spectral Characteristic
A.	continuous, aperiodic
В.	continuous, periodic
C.	discrete, aperiodic
D.	discrete, periodic

(Give your answer just in the form 1-A, 2-B, etc. Note that you have 24 different possibilities.) [8 marks]

- (*ii*) For each case, name one example of such a function and its Fourier transform. [4 marks]
- (c) Give two reasons why Logan's Theorem about the richness of zero-crossings for encoding and recovering all the information in a one-octave signal may not be applicable to images as it is for one-dimensional signals. [4 marks]