Prolog for Artificial Intelligence

(a) Give a simple definition of the Prolog predicate \(\text{dfx} \) that can perform symbolic differentiation with respect to the variable \(x \) of expressions composed of integers (e.g. 0, 1, \ldots), symbolic constants (e.g. \(a, b, \ldots \)), symbolic variables (e.g. \(x, y, \ldots \)) and the operators +, − and *, for addition, subtraction and multiplication. The first argument of \(\text{dfx} \) is the expression to differentiate and the second argument is the result. Your definition need not perform any simplification of the result. [6 marks]

(b) Trace the execution of the call: \(\text{dfx}(x*x-2, R) \). [2 marks]

(c) Now modify your definition so that it simplifies the result by the applications of rewriting rules such as: \(1*x \Rightarrow x \) and \(x-0 \Rightarrow x \). [8 marks]

(d) Discuss to what extent, if any, either of your predicates could be used to integrate an expression. [4 marks]