Topics in Concurrency

This question assumes familiarity with the process language SPL and its event-based semantics. In the following SPL process, Auth, agents can behave as initiator or responder in parallel with an attacker Spy. Letting \(A \) and \(B \) range over agent names, define

\[
\text{Init}(A, B) \equiv \text{out new } x \{x, A\}_{P_{ub}(B)}. \text{in}\{x\}_{P_{ub}(A)}. \text{nil}
\]

\[
\text{Resp}(B) \equiv \text{in}\{x, X\}_{P_{ub}(B)}. \text{out}\{x\}_{P_{ub}(X)}. \text{nil}
\]

\[
\text{Auth} \equiv \parallel_{i \in \{\text{init}, \text{resp}, \text{spy}\}} P_{i}
\]

where

\[
P_{\text{init}} \equiv \parallel_{A, B} \text{Init}(A, B), \quad P_{\text{resp}} \equiv \parallel_{A!\text{Resp}(A)}, \quad \text{and } P_{\text{spy}} \equiv !\text{Spy}
\]

(a) Explain briefly and informally the behaviour of \(\text{Init}(A, B) \) and \(\text{Resp}(B) \), for agent names \(A \) and \(B \). Describe diagrammatically the reachable events of \(\text{Init}(A, B) \) and \(\text{Resp}(B) \), taking care to specify the pre- and postconditions, and actions of the events. [5 marks]

(b) Write down an SPL process for the attacker Spy; the process should be able to compose, decompose, encrypt under public keys, and decrypt with leaked private keys. Draw the reachable events of Spy. [5 marks]

Assume a sequence of event-transitions

\[
\langle \text{Auth}, s_0, t_0 \rangle \xrightarrow{e_1} \cdots \langle p_{r-1}, s_{r-1}, t_{r-1} \rangle \xrightarrow{e_r} \langle p_r, s_r, t_r \rangle \cdots
\]

from the configuration \(\langle \text{Auth}, s_0, t_0 \rangle \), of which it is assumed that the names in \(\text{Auth} \) and the output messages \(t_0 \) are included in the name-set \(s_0 \). Suppose that the event \(e_r \) is the input of a message \(\{m\}_{P_{ub}(A)} \) by agent \(A \) as initiator. Define a property of subsets of messages \(t \) by

\[
Q(t) \text{ iff } \forall M \in t. \ m \sqsubset M \Rightarrow \{m, A\}_{P_{ub}(B)} \sqsubseteq M,
\]

where, for instance, \(m \sqsubset M \) means \(m \) is a submessage of \(M \).

(c) Explain briefly why \(Q(t_0) \) is true and \(Q(t_{r-1}) \) is false. [6 marks]

(d) Describe, without proof, the possible form(s) of the earliest event \(e_i \) for which \(Q(t_{i-1}) \) is true while \(Q(t_i) \) is false. [4 marks]