Optimising Compilers

An expression is very busy at a program point \(n \) if, no matter what path is taken from \(n \), some occurrence of the expression is always evaluated before any of the variables appearing in it are redefined. A transformation using Very Busy Expression (VBE) analysis is to evaluate the expression at \(n \) and store its value for later use.

(a) Give dataflow equations for, and a pseudo-code algorithm to calculate, VBE for a program in flowgraph form. State whether your dataflow equations are forwards or backwards. Sketch the above transformation which exploits VBE in more detail. [11 marks]

(b) Show how to calculate the call graph of a program, and explain the safety property your call graph should have. (You should relate the call graph you define to possible execution behaviour.) Detail how you handle procedure-valued variables, and state whether it is possible to improve on the technique you have chosen for such variables. [6 marks]

(c) Argue how feasible it is to calculate the call graph for a Java program, considering carefully the case of inheritance and use of the final keyword. [3 marks]