Foundations of Functional Programming

(a) Write a pure lambda-expression that will act as a fixed-point operator Y such that the identity $Yf = f(Yf)$ will hold. [6 marks]

(b) Write pure lambda-expressions that define functions P, A and D such that $A(Px y) = x$ and $D(Px y) = y$. Observe that P can be thought of as creating a 2-tuple and A and D then act as selectors that can retrieve the two components. [7 marks]

(c) Using the two above lambda-expressions it is possible to express mutual recursion between two functions, say f and g. This can be done by using Y to help find the value of (Pfg) the tuple whose elements are f and g. Using the artificial and rather silly example [the example will never terminate since it has no stopping condition!]

\[
\begin{align*}
 f\ x &= g (f (g\ x)) \\
 \text{AND} \ g\ x &= g (f\ x)
\end{align*}
\]

show how to construct a pure lambda expression that would evaluate

\[
(f\ g)
\]

[7 marks]