A regular grammar is a grammar whose rules are in one of the two following forms
(where A and B are non-terminal symbols and a is a terminal):

$$A \rightarrow a$$
$$A \rightarrow aB$$

(a) Give a regular grammar which generates floating point numbers of exactly the following form:

$$(0|1)^+.0(1)^*[e(0|1)^+]$$

where “()” indicates grouping, “[]” indicates optional item, “ρ^+” indicates one or more repetitions of ρ and “ρ^*” indicates zero or more repetitions of ρ.

[8 marks]

(b) Give a non-regular grammar with fewer productions than your answer to (a) but which generates the same set of strings.

[4 marks]

(c) Determine, with justification, for the following grammars

(i) whether S generates strings not generated by T; and

(ii) whether T generates strings not generated by S.

$$\begin{align*}
S & \rightarrow a\alpha S \\
S & \rightarrow S\text{cc} \\
S & \rightarrow d
\end{align*}$$

and

$$\begin{align*}
T & \rightarrow aT\text{c} \\
T & \rightarrow d
\end{align*}$$

[4 marks]

(d) What is the significance for the compilation process of the idea of “strings which can be generated by regular grammars”? Your answer should explain where such a module recognising such strings would appear in a compiler and a possible external interface (functions, variables and/or objects) it might present to the rest of the compiler.

[4 marks]