Compiler Construction

Describe how a parse tree can be translated into a sequence of assembly language instructions based on a pattern matching graph derived from a set of tree rewriting rules where each rule has a cost and a corresponding fragment of code. Illustrate your answer using the following rules:

- \(R_i = K_k \) \(\text{LDI } R_i, K_k \) Cost 2
- \(R_i = \text{add}(R_i, K_k) \) \(\text{ADDI } R_i, K_k \) Cost 3
- \(R_i = \text{add}(R_i, R_j) \) \(\text{ADD } R_i, R_j \) Cost 3
- \(R_i = \text{add}(R_i, \text{add}(R_j, K_k)) \) \(\text{ADD } R_i, R_j, K_k \) Cost 4

applied to the following parse tree:

\[
\text{add}(K_1, \text{add}(\text{add}(K_2, \text{add}(K_3, K_4)), \text{add}(K_5, K_6)))
\]

[15 marks]

Discuss the advantages and disadvantages of this approach to code generation. [5 marks]