Complexity Theory

State the hierarchy theorems for time and space. [4 marks]

A linear time reduction from a language \(L_1 \) to \(L_2 \) is a reduction that can be computed by a deterministic Turing machine in time \(O(n) \).

A class of languages \(C \) is closed under linear time reductions if whenever \(L_2 \in C \) and \(L_1 \) is linear-time reducible to \(L_2 \), then \(L_1 \in C \).

For each of the following complexity classes (a) to (d), say

- whether it is closed under linear time reductions
- whether it contains problems that are complete under linear time reductions

Give full justification for your answers.

(a) \(\text{DSPACE}(n^2) \) [4 marks]

(b) \(\text{L} \) [4 marks]

(c) \(\text{P} \) [4 marks]

(d) \(\text{NP} \) [4 marks]