Optimising Compilers

Consider a first-order call-by-need language with identifiers \(x_i \) and expressions \(e_i \) (which can be of type \texttt{int} only) and function names \(A_i \) (built-in) and \(G \) (a single, possibly recursive, user-defined function of the form \(G(x_1, \ldots, x_k) = e \)) whose arguments and results are of type \texttt{int}.

Describe the basic concepts of strictness analysis. You should explain what space of abstract values you would use to model strictness properties of a function of \(k \) arguments, and give the abstract strictness values for \texttt{cond} and \texttt{plus} (respectively the ternary conditional function and the binary addition function). State how one can determine that “\(f \) is strict in its \(i^{th} \) argument” in terms of your abstract value for a function \(f \) and how the abstract strictness value for \(G \) is obtained. [10 marks]

As an alternative method of deriving strictness properties, it is proposed to use an effect-like system instead. Suppose \(f \) is a function of \(k \) arguments and \(S \) is a subset of \(\{1, \ldots, k\} \). In such a system judgements on functions \(f \) are of the form

\[
\Gamma \vdash f : \texttt{int}^k \xrightarrow{S} \texttt{int}
\]

where \(\Gamma \) is a set of type assumptions on variables \(x \). The above judgement is defined to be valid if, whenever \(f \) is applied and all argument expressions in argument positions \(S \) fail to terminate, then the call to \(f \) fails to terminate (such \(f \) are often called \(S \)-jointly strict). In the following \(t \) ranges over type and effect forms \(\texttt{int}^k \xrightarrow{S} \texttt{int} \).

Give an inference rule (here called (SUB)) for judgements of the form \(\Gamma \vdash f : t \) which captures the idea that “if \(f \) is \(S \)-jointly strict in argument positions \(S \), then a call to it fails to terminate when applied to argument expressions which fail to terminate for a larger set of argument positions”. [3 marks]

Give a suitable set of assumptions of the form

\[
\Gamma_0 = \{ \texttt{plus} : t_1, \texttt{plus} : t_2, \texttt{cond} : t_3, \texttt{cond} : t_4 \}
\]

which together with the (SUB) rule above enable one to deduce exactly the valid strictness judgements \(\Gamma_0 \vdash f : t \) when \(f \) is \texttt{plus} or \texttt{cond}. [Hint: there are two \(t_i \) for both \texttt{plus} and \texttt{cond}.] [4 marks]

Give conditions on \(t \) in the judgement \(\Gamma \vdash f : t \) which enables the claim “\(f \) is strict in its \(i^{th} \) argument” to be made. [3 marks]