Communicating Automata and Pi Calculus

Explain the notions of abstraction and concretion in the π-calculus. Explain the components of a commitment $P \xrightarrow{\alpha} A$, and say what it means for each form which α may take. (You need not give the rules of commitment.) Define strong bisimulation in terms of commitments. [5 marks]

Consider each pair of the three processes $(\text{new } x)\overline{x}(y)$, $(\text{new } x)\overline{y}(x)$, and 0. Are they structurally congruent (\equiv)? Are they strongly equivalent (\sim)? Briefly justify each of your six answers. [4 marks]

The following equations define the behaviour of a buffer cell which has the ability to cut itself out of a chain of similar cells:

\[
\begin{align*}
B(in, out, \ell, r) &\overset{\text{def}}{=} in(x) \cdot C(x, in, out, \ell, r) + \tau(in, \ell) \cdot 0 \\
C(x, in, out, \ell, r) &\overset{\text{def}}{=} \text{out}(x) \cdot B(in, out, \ell, r) + \ell(in', \ell') \cdot C(x, in', out, \ell', r)
\end{align*}
\]

Let $P = \text{new mid}_m (B(in, mid, \ell, m) \mid C(x, mid, out, m, r))$. Express P as a summation up to \sim, i.e. $P \sim \Sigma \alpha_i A_i$. Use structural congruence to make the expression as simple as possible. Justify your expression. [6 marks]

Now suppose that the name out is replaced by in in the definition of P. What effect does this have upon the behaviour of P? Briefly justify your answer in terms of commitments. [5 marks]