Concurrent processes are defined by the syntax

\[P ::= A(b_1, \ldots, b_n) \mid \Sigma \alpha_i.P_i \mid P_1 | P_2 \mid \text{new } a \ P \]

where each process identifier \(A \) is equipped with a defining equation \(A(a_1, \ldots, a_n) \overset{\text{def}}{=} P_A \). Give the transition rules from which transitions of the form \(P \overset{\alpha}{\rightarrow} P' \) can be inferred, where \(\alpha \) is of the form \(a, \bar{a} \) or \(\tau \). The rules should not use structural congruence (\(\equiv \)). [5 marks]

Enumerate the ways in which a transition of the form \(P|Q \overset{\alpha}{\rightarrow} R \) can be inferred from transitions of \(P \) and/or \(Q \), and indicate the form of \(R \) in each case. [5 marks]

Hence show that if \(P|Q \overset{\alpha}{\rightarrow} R_1 \), then there exists \(R_2 \) such that \(Q|P \overset{\alpha}{\rightarrow} R_2 \) and \(R_1 \equiv R_2 \). [5 marks]

Give an example of \(P \) and \(Q \) for which \(\text{new } a(P|Q) \) has a \(\tau \)-transition but \(P|\text{new } a Q \) has no \(\tau \)-transition. Now suppose that \(\text{new } a(P|Q) \overset{\alpha}{\rightarrow} R_1 \); what syntactic condition on \(P \) ensures that \(P|\text{new } a Q \overset{\alpha}{\rightarrow} R_2 \) for some \(R_2 \) with \(R_1 \equiv R_2 \)? Justify your answer. [5 marks]