Semantics of Programming Languages

What is meant by a labelled transition system? [2 marks]

A language of commands, C, for interactive input/output is given by

$$C ::= \text{skip} \mid \ell := \ell \mid \text{getc}(\ell) \mid \text{putc}(\ell) \mid C \; ; \; C$$

$$\mid \text{if } \ell = \ell \text{ then } C \text{ else } C \mid \text{while } \ell = \ell \text{ do } C$$

where ℓ ranges over some fixed set of locations for storing characters. The command $\ell_1 := \ell_2$ copies the contents of ℓ_2 to ℓ_1. The command $\text{getc}(\ell)$ reads the next character from the standard input stream into ℓ. The command $\text{putc}(\ell)$ writes the contents of ℓ to the standard output stream. The conditional and while-loop commands involve testing whether or not the contents of two locations are equal. The commands skip and $C_1 \; ; \; C_2$ have their usual meanings. Define an operational semantics for this language as a labelled transition system whose configurations are (command, state)-pairs, (C, s), and whose actions are of the form get(c) (for reading a character c), put(c) (for writing a character c), and τ (for transitions not involving input/output). [9 marks]

Explain, without proof, in what sense this labelled transition system is deterministic. [2 marks]

A finite list t of non-τ actions is a trace of (C, s) if there is a sequence of labelled transitions starting from (C, s) whose corresponding list of actions is equal to t once any τ-actions have been erased from it. Write $C \approx_{tr} C'$ to mean that for any state s, the configurations (C, s) and (C', s) have the same traces. Show that $C_1 \approx_{tr} C_2$, where

$$C_1 \overset{\text{def}}{=} \text{getc}(\ell_1) \; ; \; \text{putc}(\ell_1) \quad \text{and} \quad C_2 \overset{\text{def}}{=} \text{getc}(\ell_1) \; ; \; \ell_2 := \ell_1 \; ; \; \text{putc}(\ell_2).$$

[3 marks]

By considering $C_1 \; ; \; C$ and $C_2 \; ; \; C$ for a suitable C, or otherwise, show that \approx_{tr} does not have the congruence property for this language. [4 marks]