Types

Give the syntax of (types and terms of) the second-order polymorphic lambda calculus \(\lambda_2 \) whose five ways of constructing terms, \(M \), are: identifiers, lambda abstraction, application, type abstraction and type application. (The last two are sometimes known as generalisation and specialisation.) Make it clear which, if any, sub-phrases of terms represent types or type variables. \[4 \text{ marks} \]

Give a term \(M \) conforming to the syntax of \(\lambda_2 \) which is not well-typed according to the usual inference rules for \(\lambda_2 \). \[2 \text{ marks} \]

Let \(\lambda U \) be the untyped lambda calculus whose terms \(N \) have syntax:

\[N ::= x \mid \lambda x. N^1 \mid N^1 N^2. \]

Define a function \(\text{erase} : \lambda_2 \rightarrow \lambda U \) which removes all types from a \(\lambda_2 \) term, but which preserves the rest of it.

[Hint: \(\text{erase}(\Lambda \alpha. M) = \text{erase}(M). \)] \[3 \text{ marks} \]

Now find (or briefly justify why this is impossible):

(a) two well-typed \(\lambda_2 \) terms \(M_1 \) and \(M_2 \) without free type variables such that \(\text{erase}(M_1) = \text{erase}(M_2) = \lambda x.x \) and that \(M_1 \) and \(M_2 \) differ by more than type variable renaming;

(b) a well-typed \(\lambda_2 \) term \(M_3 \) such that \(\text{erase}(M_3) = \lambda x.xx \);

(c) a well-typed \(\lambda_2 \) term \(M_4 \) such that \(\text{erase}(M_4) = (\lambda x.xx)(\lambda x.xx) \);

(d) a well-typed \(\lambda_2 \) term \(M_5 \) such that \(N_5 = \text{erase}(M_5) \) has no ML type;

(e) a \(\lambda U \) term \(N_6 \) which has an ML type, but such that there is no well-typed \(\lambda_2 \) term \(M_6 \) with \(\text{erase}(M_6) = N_6. \)

[11 marks]