
1997 Paper 3 Question 4

Compiler Construction

Consider the following grammar for expressions (<E>) and commands (<C>).

<E> ::= i | n | <E> - <E> | <E> ** <E> | (<E>)

<C> ::= i := <E>

| if <E> then <C> | if <E> then <C> else <C>

| <C> repeatwhile <E> | <C> ; <C> | { <C> }

Show that there are syntactic ambiguities between (a) the minus (-) and
exponentiation (**) operators, (b) the if-command and the if-then-else-
command, and (c) the if-then-else-command and the repeatwhile-command.

[4 marks]

Define, in a programming language notation of your choice, a recursive descent
parser that will construct the abstract syntax tree for an input stream conforming
to the above syntax for commands. You may assume the existence of a function
lex() that will yield an integer representing the next lexical token from the input
stream, and the functions mk2(op,x), mk3(op,x,y) and mk4(op,x,y,z) that will
construct abstract syntax tree nodes with a given operator and one, two or three
operands. You should assume that exponentiation is right associative and more
binding than subtraction which is left associative. The command following then

should be the longest possible and the command before repeatwhile should be the
shortest possible. [12 marks]

Briefly outline how you would modify your parser if the command to the left of
repeatwhile was changed to be the longest (rather than the shortest). [4 marks]

1

