Semantics

The language IMP' comprises integer and boolean expressions and commands, defined by

 $ie \in Iexp ::= \underline{n} | x | ie_1 iop ie_2$ $be \in Bexp ::= \underline{b} | ie_1 bop ie_2$ $C \in Com ::= skip | \overline{x} := ie | (C_1; C_2) |$ $if be then C_1 else C_2 | repeat C until be$

where $n \in \mathbb{Z}$, $b \in \{true, false\}$, $iop \in \{+, \times, -\}$, $bop \in \{<, =\}$ and $x \in Pvar$, a set of program variables.

(a) Give an annotated evaluation semantics for IMP', expressing the usual behaviour of each command and expression form, which derives statements of the forms

$$ie, S \Rightarrow_I n; R$$
 $be, S \Rightarrow_B b; R$ $C, S \Rightarrow_C S'; R, W$

for $S, S' \in States = (Pvar \to \mathbb{Z})$ and $R, W \subseteq Pvar$. $C, S \Rightarrow_C S'; R, W$ means 'in state S, command C executes to state S' whilst reading the set of variables R and writing the set of variables W'. Similarly, if $e \in Iexp \cup Bexp$ then $e, S \Rightarrow v; R$ means 'in state S, e reads variables R in evaluating to v'.

[5 marks]

(b) For $be \in Bexp$, $ie \in Iexp$, $C \in Com$ use induction on the structure of phrases to give simple definitions of sets

$$\mathcal{R}(ie), \mathcal{R}(be), \mathcal{PR}(C), \mathcal{PW}(C) \subseteq Pvar$$

where $\mathcal{R}(e)$ is the set of variables accessed by e, $\mathcal{PR}(C)$ is a set of variables possibly read during the execution of C and $\mathcal{PW}(C)$ is a set of variables possibly written to during the execution of C. Give an example to show that it is *not* in general true that

$$C, S \Rightarrow_C S'; R, W$$
 implies $W = \mathcal{PW}(C)$. [5 marks]

(c) Prove that for any C, S, S', R, W

 $C, S \Rightarrow_C S'; R, W$ implies $(\forall x \in Pvar. \ x \notin W \Rightarrow S(x) = S'(x))$

and that for any be, S, S', b, R

 $(\forall x \in \mathcal{R}(be).S(x) = S'(x)) \quad \text{implies} \quad (be, S \Rightarrow_B b; R \iff be, S' \Rightarrow_B b; R)$ [5 marks]

(d) Prove that for any C_1, C_2, C_3 and be that if $\mathcal{R}(be) \cap \mathcal{PW}(C_1) = \emptyset$ then

 $(C_1; \text{if } be \text{ then } C_2 \text{ else } C_3) \approx \text{ if } be \text{ then } (C_1; C_2) \text{ else } (C_1; C_3)$

You may assume without proof that if $C, S \Rightarrow_C S'; R, W$ then $W \subseteq \mathcal{PW}(C)$. [5 marks]